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8 Advanced Topics in Probability and Statistics

8.1 Random Walks and Diffusion

Many processes in biology are driven at their core by random events. On the smallest
scales, thermal fluctuations play an essential role: the assembly and disassembly of a
protein polymer, the random stepping of a molecular motor, the thermal opening and
closing of an ion channel, the random meandering of a signaling molecule through
the cytoplasm. On a large scale, the dynamics of a population are governed by births
and deaths among its many individuals, events that are sufficiently unpredictable to
be treated as random variables.

When a variable executes many independent random steps in sequence it leads to
a random walk. A canonical example is the position of a small particle, like a calcium
ion, buffeted by thermal collisions withmolecules of the surrounding fluid, as shown in
figure 8.1. If we zoom out from this molecular picture to consider many such random
variables collectively, such as the concentration of all calcium ion in a cell, then we
observe a process of mass transport called diffusion. This chapter will elaborate on the
dynamics of random walks and diffusion.

8.1.1 Brownian Motion
The earliest published account of random thermal motion comes from Robert Brown,
a biologist interested in the process of pollination (Brown (1828)). While inspecting
pollen grains suspended in water using a simple microscope, he “observed many of
them very evidently in motion.” The motions “arose neither from currents in the fluid,
nor from its gradual evaporation, but belonged to the particle itself.” Brown at first
suspected the particles to be “animated,” but soon confirmed that perfectly inorganic
substances, when ground into a dust, produced the same type of motion. Physicists
largely ignored these phenomena of “Brownian motion” until the early twentieth
century, when Einstein showed how they accord with predictions from the broader
framework of kinetic theory (Einstein (1905), Brush (1968)).

Suppose that we could track a molecule of oxygen suspended in water and let us
just follow its movements along the x-direction. The molecule’s kinetic energy is kT/2,
where T is the temperature in degrees Kelvin and k=1.38×10−23 J/K is Boltzman’s
constant, so it flies along at about 100 m/s. However, it doesn’t get very far: every 10−13

s or so, it bangs into a water molecule that changes its speed and direction. In fact, the
mean free path during which it flies straight is only 10−11 m, about 1/10 the size of a
hydrogen atom. All this is to say that the individual step of such a Brownian particle is
so small in size and duration that for all practical purposes, we will only ever have to
worry about the accumulated effect of many steps.
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Figure 8.1
A Brownian particle (red) buffeted by collisions with molecules of the surrounding medium
(blue).

8.1.2 Random Walk in One Dimension
The simplest mathematical approximation of Brownian motion is a discrete random
walk (figure 8.2). Consider a particle moving in one dimension with discrete steps. The
particle starts at x=0. At every time step, it moves either right to x+1, with probability
p, or left to x−1, with probability q=1− p.1 So if

xn = position of the particle after n steps, (8.1)

then

xn+1 =
{
xn +1 with probability p
xn −1 with probability q=1− p.

(8.2)

What is the probability distribution P(xn) for the position of the particle after n
time steps? Suppose that the n steps included m steps right and n−m steps left. Then
m follows the binomial distribution given in equation (6.20):

m∼Bin(n, p). (8.3)

0

2,000

4,000

6,000

8,000

10,000
–50 0 50

Position

Ti
m

e 
(s

te
ps

)

–200 0 200
Position

100

Figure 8.2
Left: Position as a function of time for a particle that performs an unbiased random walk
moving right or left at each time step with equal probability. Right: 100 such random walks
superposed.

1. For a Brownian particle, steps to the left and right are equally probable, but with a little
extra effort, we may as well consider this more general case, where p 
= q.
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Figure 8.3
Probability density of a random walker with p=1/2 after a large number of n steps.

The corresponding position of the particle is

xn =m− (n−m) =2m−n. (8.4)

So the probability of being at position x after n steps is

P(x;n) =
(

n
n+x
2

)
p
n+x
2 q

n−x
2 . (8.5)

This distribution is shown in figure 8.3. It has a mean μ and variance σ2, given by

μ =n(p− q), σ2 =4npq. (8.6)

For large n, we can invoke the central limit theorem to state that

P(x;n) = 1√
2πσ2

e−
(x−μ)2

2σ2 . (8.7)

So after many steps, the random walker has a bell-shaped probability distribution that
follows a Gaussian profile. The width of that Gaussian grows as the square root of the
number of steps.

8.1.3 The Diffusion Coefficient
Returning to the real world, what can we conclude about the motion of a Brownian
particle? The number of collisions that it undergoes is huge, but strictly proportional
to time. After a few nanoseconds, there have been so many collisions that the central
limit theorem kicks in. So we can immediately conclude that the particle’s position has
a Gaussian distribution whose width σ grows proportionally to the square root of time:

σ = √
2Dt. (8.8)

The proportionality constant D is called the diffusion coefficient. It completely
characterizes the particle’s behavior under thermal motion.
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Table 8.1
Approximate distance versus time for a
small molecule diffusing in water

Time Distance

1 ms 1 μm
100 ms 10 μm
10 s 100 μm
1,000 s 1 mm
1 day 10 mm

For biological applications, it is useful to remember a couple of order-of-magnitude
numbers:

For a smallmolecule (molecular weight up to a few hundred) inwater,D≈10−5cm2/s
For a protein moving laterally in a cell membrane, D≈10−9cm2/s

Note the physical dimensions of the diffusion coefficient: distance2/time. Clearly, this
is not a velocity! The typical distance traveled via diffusion is proportional not to time,
but to the square root of time. Table 8.1 lists those distances for a small molecule in
water.

So a small signaling molecule can equilibrate across a typical cell body in 0.1 s,
but if it needs to get 1 cm down the axon of a neuron that would take forever. Clearly,
thermal transport is not sufficient there.

8.1.4 Fick’s Laws of Diffusion
Let us now imagine a very large number of molecules, all executing Brownian motion
independently of each other. Again, we will model this as a discrete randomwalk along
the x-axis. Suppose that after j time steps, there are Ni,j particles located at position i
(figure 8.4):

Ni,j =number of particles at position i after step j. (8.9)

In the next step, half the particles at location i step to the right and the other half to
the left. So the net number of particles moving across the border from i to i+1 is:

Mi,j =number of particles moving from position i to (i+1) during step (j+1)

= 1
2

(
Ni,j −Ni+1,j

)
.

(8.10)

So the new number of particles becomes

Ni,j+1 =Ni,j +Mi−1,j −Mi,j. (8.11)

To connect to real-world units, we define

�x= size of a step along the x-axis

�t=duration of a step.
(8.12)
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Figure 8.4
A distribution of particles undergoing independent random walks.

Then we take the continuum limit by allowing �x→0 and �t→0 while keeping the

diffusion coefficient constant 1
2

(�x)2
�t =D. In that limit,

Ni,j

�x
→C(x, t) = concentration of particles at position x= i�x and time t= j�t (8.13)

and

Mi,j

�t
→ J(x, t) =flux of particles at position x= i�x and time t= j�t. (8.14)

Equation (8.10), after dividing by �t, is

Mi,j

�t
= 1

2
(�x)2

�t

(
Ni,j −Ni+1,j

)
(�x)2

, (8.15)

which becomes, in the continuum limit

J(x, t) = −D∂C(x, t)
∂x

. (8.16)

Similarly, equation (8.11), after dividing by �t and �x, becomes in the continuum limit

∂C(x, t)
∂t

= −∂J(x, t)
∂x

. (8.17)

Equations (8.16) and (8.17) are called Fick’s laws of diffusion. They relate the local
flux of particles to the concentration. These two partial differential equations can be
combined to produce the diffusion equation:

∂

∂t
C(x, t) =D

∂2

∂x2
C(x, t). (8.18)

8.1.5 Qualitative Behavior of the Diffusion Equation
Qualitatively, diffusion acts so as to “smooth” the concentration profile over time, as
illustrated in figure 8.5. Around a peak in the profile of C(x, t), the second spatial deriva-
tive is negative, so according to equation (8.18), the concentration here will decrease.
The simple reason is that this region is flanked on both sides by an outward-sloping
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Figure 8.5
The evolution of a concentration profile under diffusion.

concentration gradient, which leads to particles flowing out of that region. On the other
hand, at a local minimum, the second spatial derivative is positive, there is an inward
sloping gradient on both sides, so this concentration will increase. The net effect is that
peaks of concentration get flattened and valleys get filled in. The final state at long
times tends to have no peaks or valleys, unless some special boundary conditions apply.

8.1.6 Random Walks and Diffusion in Higher Dimensions
Many biological motions take place in two or three dimensions. One can model three-
dimensional (3D) Brownian motion as a random walk on a 3D coordinate grid, with
the particle taking steps to a neighboring grid point simultaneously in all three direc-
tions. So during one step, x, y, and z all change by ±1. Because the three random walks
take place independently, we can consider each coordinate on its own, each of which
behaves just like the one-dimensional (1D) case discussed in section 8.1.4.

Back in the real world, if a particle with diffusion coefficient D starts at the origin,
then after time t, all three position variables will be distributed like a Gaussian with
variance 2Dt:

Px (x) = 1√
4πDt

e−
x2
4Dt

Py
(
y
)= 1√

4πDt
e−

y2

4Dt

Pz (z) = 1√
4πDt

e−
z2
4Dt .

(8.19)

The Euclidean distance from the starting point is r=√x2 + y2 + z2 and its variance is〈
r2
〉
=
〈
x2 + y2 + z2

〉
=6Dt. (8.20)

Fick’s laws relate the flux of particles to the concentration. The 3D versions are

J= −D∇C(r, t)

∂

∂t
C(r, t)= −∇ · J.

(8.21)
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Here, r= (x, y, z) refers to the position in three dimensions; C is the concentration and
J is the flux of particles. The term

∇C=
(

∂C
∂x

,
∂C
∂y

,
∂C
∂z

)
(8.22)

is the gradient (i.e. multidimensional derivative) of the concentration and

∇ · J= ∂J
∂x

+ ∂J
∂y

+ ∂J
∂z

(8.23)

is the divergence of the flux field (note that this is not the same as the gradient; it is the
dot product of the gradient operator with the flux J).

Again, one can combine the two laws into one diffusion equation:

∂

∂t
C(r, t) =D∇ · ∇C(r, t)

=D∇2C(r, t),
(8.24)

where ∇ · ∇ ≡ ∇2 ≡ � is the Laplacian operator. In 3D Cartesian coordinates, this is
simply

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. (8.25)

Depending on the spatial symmetries of the problem at hand, it can be more conve-
nient to work in a different coordinate system, and some caution is required around
differential operators. For example, in the 3D spherical coordinate system (section
1.5.1) with coordinates (r, θ ,φ), the Laplacian is

∇2 ≡ 1
r2

∂

∂r

(
r2

∂

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂φ2 . (8.26)

8.1.7 Solving the Diffusion Equation
In addition to the transport of particles by Brownian motion, the diffusion equation
covers other phenomena of mass transport, like the conduction of heat, or the move-
ment of electric charge in an electrolyte. In a typical problem, one is given an initial
condition of the profile C(x, t=0) and wants to know the future concentration profile
C(x, t). Beside the initial condition, one has to also deal with boundary conditions
that specify what happens at the edges of the space or other special locations. In some
cases, one is mostly interested in the final steady-state solution at very long times
C(x, t= ∞). Here, we touch on some of these methods for solving the diffusion equa-
tion. These may help you devise at least an approximate solution to your problem. For
tough problems, one can always resort to lookup via the Google search bar. Back when
people read books, a classic collection of solutions could be found in Carslaw and Jaeger
(1986).

8.1.7.1 Superposition The diffusion equation falls in the class of linear partial dif-
ferential equations. This simply means that the function of interest C(x, t) and its
derivatives appear only with a power of 1. As a consequence, the solutions of the
differential equation obey the superposition principle: If two functions C1(x, t) and
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C2(x, t) are both solutions to the diffusion equation, then any linear combination
λ1C1(x, t) + λ2C2(x, t) is also a solution.

We encountered this superposition idea before in the more general treatment
of linear systems in section 3.1.2. Here again, we will see that it has powerful
consequences.

A simple way to understand superposition is to remember that at time t=0, the
initial concentration profile C(x, 0) is made of many independent particles. Each of
these executes a random walk, independent of the others. If we arbitrarily divide those
particles into a red group C1(x, 0) and a blue group C2(x, 0), they will still produce the
exact same profile C(x, t) later on. Note that this argument relies on there being no
interaction between the particles. If they do interfere with each other, the differential
equation will not be linear, and superposition no longer applies.

8.1.7.2 Green’s function This argument leads to another conclusion: We can solve
for the future profile C(x, t) if we simply know what happens to the probability density
of each individual particle over time. After all, the full profile is simply the sum of the
individual particle densities.

So let us suppose that the probability density of a particle that starts at location x′
develops according to

G(x; x′, t) = probability that a particle is at location x at time t

if it started from x′ at time 0.
(8.27)

Technically, this is called the Green’s function of the diffusion problem. Obviously, at
time t=0, the particle is certain to be at x= x′, so

G
(
x; x′, t=0

)= δ
(
x− x′), (8.28)

where δ(x) is the delta function. We can write the initial profile as a sum over these
delta functions:

C (x, 0)=
∫
x′

C
(
x′, 0

)
G
(
x; x′, 0

)
dx′. (8.29)

Then we allow each of the particles to evolve according to its Green’s function and sum
again to get the solution:

C (x, t)=
∫
x′

C
(
x′, 0

)
G
(
x; x′, t

)
dx′. (8.30)

A simple example is diffusion in free space. Suppose that there are no boundaries
anywhere, so the entire x-axis is available. Then we already know the Green’s function:
A particle will diffuse according to the spreading Gaussian of equation (8.7):

G
(
x; x′, t

)= 1√
4πDt

e−
(x−x′)2

4Dt . (8.31)

All places along the x-axis behave the same way, so this same Green’s function applies
nomatter where the particle starts. Therefore, the solution with initial conditionC(x, 0)



Advanced Topics in Probability and Statistics 183

1

0

–20 –10 0
Position

C
on

ce
nt

ra
tio

n

10

Dt = 0

1

3

10

30

100

20

Figure 8.6
Diffusion from an initial square bolus of particles.

is simply

C (x, t) =
∫
x′

C
(
x′, 0

) 1√
4πDt

e−
(x−x′)2

4Dt dx′. (8.32)

Figure 8.6 shows the time-dependent solution when the initial condition is a bolus of
particles with a square concentration profile.

8.1.7.3 Boundary conditions At boundaries in the space, one generally considers two
kinds of conditions:

Reflecting boundary: Particles bounce off this surface. That means that there can
be no flux of particles into or out of the surface. So the boundary condition is that
everywhere on the surface,

J (r, t) ·n=0 (8.33)

where n is the normal vector to the surface.
Absorbing boundary: Particles get swallowed by this surface, never to appear
again. That means the concentration of particles is zero everywhere on the
surface:

C (r, t) =0. (8.34)

Some simple boundary problems can be solved with so-called mirror sources.
For example, suppose that a particle diffuses in one dimension, starting at x= a, but
there is a reflective boundary at x=0, so its motion is constrained to the right half
of the x-axis only. We can imagine instead that there is no boundary at all, but a sec-
ond particle starts out at x= −a, in the mirror-reflected position of the true particle
(figure 8.7). For every time that the true particle random-walks through the bound-
ary to x<0, the mirror particle random-walks out of the boundary in the opposite
direction.
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Figure 8.7
Mirror sources: To simulate the random walk of a particle with a reflecting boundary at
x=0, we imagine two mirror particles (blue and red) executing mirror-symmetric walks, but
without a barrier. Whenever the red particle crosses into the right half, it looks like the blue
particle bounced off the barrier.

So in the right half of the space, we can simply add the density of the true and the
virtual particles to get the solution:

Cref (x, t)= 1√
4πDt

(
e−

(x−a)2
4Dt + e−

(x+a)2
4Dt

)
. (8.35)

This perfectly emulates the reflection of a particle at a reflecting boundary.
Similarly, for an absorbing boundary, we add an antiparticle in the mirror position

(i.e., one with “negative probability”). At the surface, the densities of the two particles
precisely cancel each other out, thus enforcing the condition C(x, t) =0:

Cabs (x, t)= 1√
4πDt

(
e−

(x−a)2
4Dt − e−

(x+a)2
4Dt

)
. (8.36)

8.1.8 Steady-State Solutions
After a long time t, diffusion systems typically settle into a steady state where nothing
changes anymore. Based on equation (8.24), that means

∇2C(r) =0. (8.37)

The solutions to this equation2 depend entirely on the boundary conditions. Here are
some examples.

Example 8.1 (Diffusion in a box) Suppose that a volume is entirely enclosed by a reflect-
ing boundary. Then the concentration within the volume will eventually settle down
to a constant value everywhere:

C(r) = c. (8.38)

2. This is called Laplace’s equation and also appears in electrostatics, where it governs the
electric potential in charge-free space. Sometimes you can crib a diffusion solution from an
electrostatics book.
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Geometry of diffusion examples. Left: Pipe between two stirred tanks. Right: An absorbing
sphere in an infinite tank.

Clearly, this satisfies ∇2C(r) =0. Also, the flux is zero everywhere: J(r) = −D∇C(r) =0,
which satisfies the reflecting condition at the boundary of the space. �

Example 8.2 (Diffusion between two stirred compartments) Imagine a thin pipe
between two water tanks (figure 8.8). Each tank is kept at a constant concentration
of the solute. If x∈ [0,L] is the position along the pipe, then the boundary conditions
for C(x) are

C(0) = c0,C(L) = c1. (8.39)

Along the pipe, the concentration is

C(x) = c0 + (c1 − c0)
x
L
. (8.40)

The gradient ∂C
∂x = c1−c0

L is constant along the pipe, so ∂2C
∂x2

=0 satisfies equation (8.37).

Also, there is a constant flux of solute along the pipe of strength J= −D ∂C
∂x = −Dc1−c0

L
from the high-concentration to the low-concentration tank. �

Example 8.3 (Diffusion to an absorbing sphere) Imagine a sphere of radius a immersed
in an infinite tank (figure 8.8). The sphere absorbs all the solute particles that hit its
surface. Because of spherical symmetry, the concentration C(r) will depend only on the
distance r from the center of the sphere. At the surface of the sphere, C(a) =0. Far from
the sphere, the concentration is maintained at C(∞) =C∞. In between, the solution to
equation (8.37) is

C(r) =C∞
(
1− a

r

)
. (8.41)

To verify this, recall the form of the Laplacian differential operator in spherical
coordinates in equation (8.26). �

Example 8.4 (What is the “diffusion-limited reaction rate”?) For two molecules A and
B to react, they must diffuse to within molecular dimensions of each other. Suppose
that molecule A is held fixed at the origin and molecules of type B are present at an
average concentration C∞. We want to know at what rate per unit time molecules of
type B get to within the reaction radius a of the origin. So imagine an absorbing sphere
of radius a that destroys all the molecules that touch its surface. Given the result in
equation (8.41), the steady-state concentration profile is
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C(r) =C∞
(
1− a

r

)
. (8.42)

The resulting flux of particles at the surface of the sphere is

J(a) = −D ∂

∂r
C(a) = D

a2
C∞. (8.43)

and the rate at which particles hit the surface is

R= J(a)4πa2 =4πaDC∞. (8.44)

This rate is proportional to the concentration of molecules C∞ and the proportionality
constant is called the diffusion-limited reaction rate, kD. If we choose a to be a typical
molecular dimension of 0.1 nm, and D a typical diffusion coefficient of 10−5 cm2/s,
then

kD =R/C∞ =4πaD≈109M−1s−1. (8.45)
�

8.2 Random Time Series

Experimental measurements often involve recording a quantity over time and try-
ing to infer some structure from these measurements. Typically, the measurements
are taken at discrete times ti, yielding values yi. Such a sequence of measurements
{(y1, t1), (y2, t2), . . . , (yn, tn)} is called a “time series.” A random time series is a func-
tion {(yi, ti)} whose evolution is stochastic and not uniquely determined by the initial
conditions. Examples include the position of a particle following Brownianmotion, the
number of mutations on a chromosome over time, the number of bacteria in a growing
population, the electric current flowing across a cell membrane, and the fluorescence
intensity of a chromophore, just to name a few.

A random time series can be characterized completely by specifying the joint
probability distribution for its values at the various times:

Pn
(
y1, t1; . . . ; yn, tn

)
dy1 . . .dyn =
=Prob

(
y(t1) ∈ [y1, y1 +dy1], . . . , y(tn) ∈ [yn, yn +dyn]

)
.

(8.46)

Of course, this is a huge object with almost infinitely many parameters. Fortunately,
there are special conditions under which the probability distribution simplifies, to the
point where one can capture its essence in a finite experiment and use it to make
practical predictions.

8.2.1 Stationary Process
A stationary process is one whose rules don’t change over time. This means that
any given sequence of measurements {(y1, t1), (y2, t2), . . . , (yn, tn)} is as equally proba-
ble now as it was some time ago. The joint probability distribution depends only on
time differences, not on the absolute time:

Pn
(
y1, t1; y2, t2; . . . ; yn, tn

)=Pn
(
y1, 0; y2, t2 − t1; . . . ; yn, tn − tn−1

)
. (8.47)
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Often, one can argue from first principles that a process should be stationary, for
example because none of the external constraints have changed in a long time, and
the system has somehow found equilibrium.

8.2.2 Markov Process
AMarkov process is a special type of stationary process whose future evolution is com-
pletely determined by themost recent value. How the system arrived at that value is not
important: the history of the random variable plays no role in its future. This applies to
many important processes, like random walks, protein state transitions, and US foreign
policy (to good approximation):

Pn
(
yn, tn|y1, t1; y2, t2; . . . ; yn−1, tn−1

)=P2
(
yn, tn|yn−1, tn−1

)
. (8.48)

This is a very powerful simplification, as we only need to consider transitions from
the current time point to the next. A Markov process is completely determined by the
instantaneous distribution P1(y1), where

P1(y1)dy1 =Prob
(
y∈ [y1, y1 +dy1]

)
, (8.49)

and the transition probability

P2
(
y2, t|y1

)= P2
(
y1, 0; y2, t

)
P1(y1)

, (8.50)

where

P2
(
y2, t|y1

)
dy2 =Prob

(
y∈ [y2, y2 +dy2] at time t, given that y= y1 at time 0

)
. (8.51)

Example 8.5 (Random telegraph signal) This is a simple random process that
nonetheless serves as a useful model in many situations of practical importance—
namely, any time a system flips back and forth between two states in a historyless
fashion (figure 8.10). Examples are chemical binding sites flipping between bound and
empty, an enzyme flickering on and off, or an ion channel switching between open
and closed. Here, the variable y(t) is binary:

y(t) ∈ {0, 1}, (8.52)

and it performs transitions from one value to the other at a constant rate: If y=0, then
in the next short interval dt, it will switch to 1 with probability α01dt as shown in
figure 8.9. Similarly, if y=1, then it will switch to 0 with probability α10dt. Note that
this process is both stationary and Markov: The switching rates α01, α10 are constant
in time and transitions depend only on the current state of the variable, not on its
history.

Based on this definition of the process, we compute the transition probability as
follows: Call P2 (1, t|0) the probability that y=1 at time t, given that y=0 at time 0.
Now let us consider how that probability changes between t and t+dt. One can get
y=1 at time t+dt in two ways: either y=0 at time t, and then the value switches to
1 in the following small interval [t, t+dt]; or y=1 at time t, and there is no switch in
the interval [t, t+dt]. The two possibilities are mutually exclusive, so we can write
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Figure 8.9
A random telegraph signal with transitions between values of 0 and 1.
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Figure 8.10
Left: Time course of a random telegraph signal with α01 =2 s−1 and α10 =1 s−1. Right:
Probability that the signal will be 1 at time t, given that it was 0 at time t=0.

P2
(
1, t+dt|0)=P2 (0, t|0) α01dt+P2 (1, t|0) (1− α01dt)

= (1−P2 (1, t|0))α01dt+P2 (1, t|0) (1− α01dt).
(8.53)

So

d
dt
P2 (1, t|0)= α01 − (α01 + α10)P2 (1, t|0), (8.54)

with the solution

P2 (1, t|0)= α01

α01 + α10

(
1− e−(α01+α10)t

)
. (8.55)

From symmetry, one gets the other transition probabilities:

P2 (0, t|0)=1−P2 (1, t|0)

P2 (0, t|1)= α10

α01 + α10

(
1− e−(α01+α10)t

)
P2 (1, t|1)=1−P2 (0, t|1).

(8.56)

Finally, the instantaneous probability that y=1 is obtained from the transition proba-
bilities after a very long time is:

P1(1) =P2 (1, t= ∞|0) = α01

α01 + α10
(8.57)

and obviously, P1(0) =1−P1(1). Because this is a Markov process, everything about it
can be computed from functions P1 and P2. �
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8.2.3 Moments of a Random Process
The mean of a random process is defined as

Mean= 〈y(t)〉 (8.58)

and the variance as

Variance= 〈(y(t) − 〈y(t)〉)2〉 = 〈y2(t)〉 − 〈y(t)〉2, (8.59)

where the angle brackets denote the ensemble average over different instantiations of
the random process that start from the same initial conditions. If the process is sta-
tionary, then the ensemble average is equal to the time average and no longer depends
on absolute time:

〈
y(t)

〉= ȳ= lim
T→∞

1
T

∫ T

0
y(t)dt. (8.60)

8.2.4 Correlation Function and Power Spectrum
Another second moment of a random process is the correlation function C(τ ), which
relates values over time:

C(τ ) = 〈y(t)y(t+ τ)〉. (8.61)

For a stationary process, one can again compute the averages over time, and the
correlation function depends only on the time difference τ , not on absolute time t:

C(τ ) = lim
T→∞

1
T

∫ T

0
y(t) · y(t+ τ)dt. (8.62)

An important result relates the correlation function of a random process to its
power spectrum. Extending the definition in equation (3.28), the power spectrum of a
randomprocess is the expectation value of the squaremodulus of the Fourier transform:

P(ω) =
〈
|ŷ(ω)|2

〉
, (8.63)

where the expectation is over many instances of the same process.
For a stationary process, the Wiener-Khintchin theorem states that

P(ω) =
∫ +∞

τ=−∞
C(τ )e−iωτdτ . (8.64)

Stated in words: The power spectrum is the Fourier transform of the correlation
function.

Example 8.6 (Random telegraph signal) To illustrate these concepts, let us return to
the random telegraph process of section 8.5. Recall that this random variable y switches
between the values of 0 and 1. Transitions from 0 to 1 happen at constant probability
per unit time α01 and from 1 to 0 at a rate α10. What is the correlation function for this
system?
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We need to calculate

C(τ ) = 〈y(0)y(τ )〉. (8.65)

As theproduct vanisheswheneither y(0)or y(τ ) are 0, the only remaining contribution is

C(τ ) =Prob[y(0) =1 and y(τ ) =1]. (8.66)

Using conditional probability, we see that

Prob[y(0) =1 and y(τ ) =1]=Prob[y(0) =1] ·Prob[y(τ ) =1|y(0) =1)]
=P1(1) ·P2 (1, τ |1) .

(8.67)

From the results in section 8.5, one finds

C(τ ) = α01

α01 + α10
·
(

α01

α01 + α10
+ α10

α01 + α10
e−(α01+α10)τ

)
. (8.68)

The correlation function consists of a decaying exponential. The power spectrum is the
Fourier transform of that function. Note that we encountered the power spectrum of a
decaying exponential previously in equation (3.30). Here,

P(ω) =
∫ +∞

−∞
C(τ )e−iωτdτ

=2Re
[∫ +∞

0
C(τ )e−iωτdτ

]
,

=2b(1− b)
α

α2 + ω2

(8.69)

where

b=P1(1) = α01

α01 + α10

α = α01 + α10,
(8.70)

and we have ignored the divergence of the power at ω =0. Figure 8.11 illustrates the
correlation function and power spectrum of this process. �

8.2.5 Discrete Markov Process
Frequently, one approximates a system as taking on a discrete set of states. For example,
a protein might exist in one of several discrete conformations, or an animal may be in
one of a few behavioral states. If these discrete states are long-lived compared to the
transitions between them, then we can take the transitions to be instantaneous. This
defines a discrete stochastic process.

If, in addition, the process X(t) is stationary and Markovian, then it is called a
discrete Markov process. This means that transitions from state X= i to state X= j
happen at constant probability per unit time αij, and that transition rate is independent
of the prior history of the process (figure 8.12). Note that this is a generalization of the
random telegraph described in example 8.5, which exists in only two states: X∈ {0, 1}.
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Figure 8.11
Left: Correlation function of a random telegraph signal with α01 =2 s−1 and α10 =1 s−1.
Right: Power spectrum of that same random process.
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Figure 8.12
A discrete Markov process takes on one of a set of states i, with first-order transitions
happening at rates αij. In this example, four states are possible.

To understand the evolution of X(t) from any given starting state, one can fol-
low the same approach as for the random telegraph process. First, define a transition
probability:

Pij(t) =Probability that X= j at time t, given that X= i at time 0. (8.71)

Again, by consideringwhat happens in the last short time interval dt, one finds that

d
dt
Pij(t) =

∑
k

Pik(t)αkj −Pij(t)
∑
l

αjl. (8.72)

Here, the first term includes all the transitions from other states into state j and the
second term are transitions away from state j. Equation (8.72) is called the master
equation of the process.

To solve the master equation, note that it can be written in matrix form as

d
dt

P(t) =P(t) ·Q, (8.73)

where P is the matrix of all transition probabilities Pij, and Q is given by

Qij = αij − δij
∑
l

αjl. (8.74)
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Figure 8.13
An HMM with two hidden states and two observable outcomes.

This is simply the matrix version of the rabbit equation (1.34), so the general solution is

P(t) =P(0) · eQt = eQt (8.75)

because P(0) is the identity. As usual, this is most easily evaluated in the eigenbasis of
the matrix Q; see section 2.11.2. Using the diagonalizing transform S,

P(t) = S ·

⎡⎢⎢⎣
eλ1t . . . 0
...

. . .
...

0 . . . eλnt

⎤⎥⎥⎦ · S−1, (8.76)

where λk are the eigenvalues of the matrix Q. So the transition probabilities take the
general form of a sum of exponentials:

Pij(t) =
∑
k

cke
λkt (8.77)

where the ck can be computed from equation (8.76). This fully describes the stochastic
evolution of the system from any initial distribution of states.

With these transition probabilities, one can further compute the correlation func-
tion or power spectra of the process, following the approach elaborated here for the
random telegraph signal (see example 8.6).

8.3 Hidden Markov Models

In section 8.2.5, we considered a system that exists in discrete states Xi, with transition
rates αij among these states constant in time. Sometimes we cannot observe the system’s
state directly, but rather have to guess it based on some observable Y that is produced
in a way that depends on the state X. A formalization of this concept is the hidden
Markov model (HMM).

Figure 8.13 shows an example of an HMM with two states X∈ {x1, x2} and an
observable that takes one of two values Y ∈ {y1, y2}. We will treat this as a discrete-time
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process, where time proceeds in discrete steps. If the system is in state X= xi, then in
the next time step, it transitions to state xj with probability αij. Also, the system emits
an observable Y = yk with probability βik. The probabilities are normalized, such that∑

j

αij =1 for all i

∑
k

βik =1 for all i.
(8.78)

A sample sequence generated by the HMM in the figure would be

Hidden state sequence X(t) : x1 x1 x2 x2 x2 x1 x2 x1 x1 x2.
Observable sequence Y(t) : y2 y2 y2 y1 y1 y2 y2 y2 y1 y1.

(8.79)

An HMM is fully determined by the set of states X, the set of observables Y, and
the probabilities for transitions αij and those for emissions βik:

[X,Y, {αij,βik}]. (8.80)

There are three types of problems that one wants to solve in the context of HMMs:

Given a model [X,Y, {αij,βik}], what is the probability of a particular sequence of
observations Y(t)? Note that several different hidden state sequences may generate
the same sequence of observations, and one must take all of them into account. This
is done using the forward algorithm.
Given a model [X,Y, {αij,βik}] and a sequence of observations Y(t), what is the
most likely sequence of states X(t) that generated it? This is done by the Viterbi
algorithm, and this sequence of hidden states is called the Viterbi path.
Given an HMM architecture [X,Y] and a sequence of observations Y(t), what are
the most likely transition and emission probabilities [{αij,βik}]? This is typically
done using the Baum-Welch algorithm, which in turn uses the forward-backward
algorithm.

In all these cases, the challenge is that the number of possibilities grows exponen-
tially with the sequence length. These algorithms have been developed to make the
calculations computationally feasible. Although a detailed explanation of these algo-
rithms is beyond the scope of this text, we illustrate the ideas with some examples
here.

8.3.1 Finding Genes in DNA Sequence
The central dogma in biology states that deoxyribonucleic acid (DNA) is transcribed
into messenger ribonucleic acid (mRNA), which is translated into protein. However,
during preparation of mRNA from DNA, some sections of sequence are removed
by splicing. These sections are called “introns,” whereas the remaining segments
that ultimately encode the protein are known as “exons.” Given a DNA sequence
such as

. . .ATGCGACTGCATAGCACTT . . . , (8.81)
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START Exon 1 Exon 2

Intron

Exon 3 END

Figure 8.14
An HMM for modeling introns and exons within genes.

it is a challenge to determine which sections are exons and which are introns. Some
clues are available because the sequence in exons has to meet certain constraints. Each
triplet of nucleotides encodes an amino acid, and thus the frequency of triplets inside
exons follows certain statistical regularities. Within introns, the frequencies are dif-
ferent. Effectively, the DNA sequence has a hidden state—exon or intron—at each
location. We cannot observe the state directly, but we can see the nucleotides that
were “emitted,” and their probabilities depend on the state.

One can formalize this argument by imagining that the DNA sequence was pro-
duced by a machine that has the mechanics of an HMM (figure 8.14). The machine has
three exon states and one intron state. With every step along the DNA, the machine
makes a state transition. In state “Exon 1,” it emits the first nucleotide of a codon. Then
it transitions deterministically to state “Exon 2” and emits the second nucleotide. Next,
it moves to state “Exon 3” to emit the last nucleotide of that codon. At the next step,
the machine may return to “Exon 1” to deliver another codon of three nucleotides.
Or it may switch to state “Intron” and deliver one or more intron nucleotides before
returning to “Exon 1.”

Wewould like to determinewhat is themost likely sequenceX(t) of intron/exon
states, given the observed sequence Y(t) of nucleotides. This requires that we know
the transition probabilities αij among the states of themodel and the emission probabil-
ities βik with which each state generates nucleotides. Both have been tabulated from a
large number of genes where the ground truth about introns and exons is known. Then
one can use these probabilities to infer the intron/exon state on a novel sequence. This
can be accomplished by the Viterbi algorithm.

8.3.2 Sequence Alignment
In the analysis of genetic sequences, either protein or DNA, one often wants to eval-
uate the similarity between two sequences. For example, we may be interested in
understanding how the protein sequence from several species diverged from that of
a common ancestor, so as to place those species on a philogenetic tree. In measur-
ing the similarity of two sequences, the first issue is the problem of alignment: Which
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An HMM for sequence alignment.
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Figure 8.16
A sequence alignment as a path through the HMM.

amino acid in one sequence corresponds to which in the other? Two sequences may
differ for three reasons: (1) an amino acid has been mutated to a different one; (2) an
extra amino acid has been inserted; or (3) an amino acid has been deleted.

As shown in section (8.3.1), we imagine that the two amino acid sequencesX(t) and
Y(t) were produced by a machine that acts like an HMM (figure 8.15). The model has
three states, M, X and Y. In state M, the model generates a pair of symbols (amino acids)
and adds one to sequence X(t) and the other to sequence Y(t). If there is no mutation,
the amino acids are the same, and this is the most likely scenario. But sometimes a
mutation occurs, so the machine may add, say, alanine to one sequence and glycine to
the other. The probability of emitting a particular pair of amino acids (x, y) is P(x, y).

Sometimes, though, the model will switch to one of the other states, X or Y. In this
state, themodel generates an amino acid for one of the sequences, but not for the other.
The rate at which this switch between states happens is controlled by the transition
probabilities ε and δ, and once the system is in one of these states, it will generate an
amino acid with probability Q(x) or Q(y). This allows the model to account for amino
acid insertions and deletions.

For a given pair of sequences, the particular path S(t) ∈ {M,X,Y} of the state of
the model proposes an alignment between the two sequences—namely, the location
of mutations, insertions, and deletions (figure 8.16). Different paths will generate
the observed sequences with different likelihoods, and the maximum likelihood path
represents the optimal alignment.

The model parameters are the transition probabilities ε and δ and the emission
probabilities P(xi, yj) and Q(xi). These parameters are determined from experience, fol-
lowing many successful protein alignments. For example, the emission probabilities
P(x, y) will depend on factors such as the evolutionary distance between the two species
or the specific protein in question. Tables have been compiled empirically that capture
these factors, and one such table, called BLOSUM 50, is shown in figure 8.17.
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Figure 8.17
The BLOSUM 50 matrix used for protein sequence alignment. The entry (i, j) gives the log-
likelihood of adding amino acid i and amino acid j to the sequences X and Y, respectively.

The simple three-state HMM presented here is only a first approximation to the
myriad of complex models and refinements that have been developed in the field of
sequence alignment. Proteins have different domains, and it is natural to assume that
different models will apply to different domains. This can also be incorporated into the
analysis.

8.3.3 Further Reading
See Henderson et al. (1997) for an early application of HMMs to gene finding. The
general application to sequence analysis is reviewed in Durbin et al. (1998) and Eddy
(2004). An application to problems of learning in animals is found in Smith et al. (2004).
More theory and applications can be found in Dymarski (2011).

8.4 Point Processes

A point process is a series of identical events that are point like in time. A sample from
a point process is completely specified by listing the event times {t1, t2, . . . , tn}. Some
examples encountered in biological research include the following:

The arrival times of photons at a camera or at a photoreceptor cell
Times of collision between a ligand and a binding site
Times of opening of an ion channel
Times of random mutations occurring in a genome
Times of action potentials fired by a neuron
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Point processes can also be defined in spatial dimensions, such as the locations of
all trees of a given species in a field, or the locations of all nerve cells of a given type on
the surface of the retina. The following sections will focus on temporal processes, but
the treatment translates easily to space.

8.4.1 Intensity Function
A random point process is fully specified by the conditional intensity function, which
spells out the probability of getting an event in the next small time interval. In general,
that probability depends on time, but it also depends on the entire preceding history
of the process:

P(t| . . . , t−2, t−1)dt=probability of getting an event in [t, t+dt]
as a function of t and the entire history

{. . . , t−2, t−1} of event times prior to t.

(8.82)

8.4.2 Stationary Point Process
As introduced in section 8.2.1, a stationary process does not depend on absolute time,
but only on time differences. A point process is stationary if a time shift by τ leaves
the conditional intensity unchanged; namely,

P(t+ τ | . . . , t−2 + τ , t−1 + τ) =P(t| . . . , t−2, t−1). (8.83)

8.4.3 Poisson Process
This is the simplest case of a point process, in which the events happen with constant
probability per unit time and independent of history:

P(t| . . . , t−2, t−1) = λ. (8.84)

Classic examples are the arrival of photons from a constant light source and the clicks
in a Geiger counter from a radioactive sample. Some characteristics of this process have
been elaborated earlier in this book, in sections 6.3.7 and 6.4.6.

The number of events N observed in a time interval of length T is a discrete
random variable, which follows the Poisson distribution

P(N,T) = e−μ μN

N! , (8.85)

where

μ = 〈N〉 = λT (8.86)

is the expectation value of N.
The time interval τ between successive events is a continuous random variable

that follows the exponential distribution

P(τ ) = λe−λτ . (8.87)

Successive time intervals are statistically independent, so the time τn to the nth event
follows a gamma distribution:
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τn ∼Gamma(n, λ)

P(τn) = τn−1
n e−βτnβn

�(n)
.

(8.88)

8.4.4 Inhomogeneous Poisson Process
Here, the intensity λ varies with time, but independent of the history of the process:

P(t| . . . , t−2, t−1) = λ(t). (8.89)

In a simple example, consider a lamp whose intensity I(t) is getting modulated up
and down with a dimmer knob. The photon stream from that light source follows an
inhomogeneous Poisson process with λ(t) ∝ I(t).

One can obtain such an inhomogeneous Poisson process from a homogeneous one
with λ =1 by warping the time axis. Imagine that warp time τ flows faster and slower
relative to t according to the intensity λ(t):

dτ

dt
= λ(t). (8.90)

Then events that are at a constant density of 1 per unit time on the τ -axis get
compressed or expanded on the t-axis, exactly so as to achieve the density λ(t).

From this argument, it follows that the number of events in any given time interval
[ta, tb] is again Poisson distributed. The mean number is

μ =
∫ tb

ta
λ(t)dt, (8.91)

and the distribution is

N∼Poiss(μ). (8.92)

8.4.5 Spectral Analysis of a Point Process
To use the range of frequency-analysis tools developed in section 3.2, it helps to convert
the point process into a continuous function of time. For that purpose, each event in
the process {tk} contributes a dirac delta function:

R(t) =
∑
k

δ(t− tk). (8.93)

This function can be seen as the rate of occurrence of events because its integral delivers
the cumulative number of events:∫ t

R(t′)dt′ =N(t) =number of events before time t. (8.94)

The Fourier transform at frequency ω becomes

R̂(ω) =
∫
R(t)e−iωtdt=

∑
k

e−iωtk . (8.95)



Advanced Topics in Probability and Statistics 199

This expression has a useful geometric interpretation: e−iωtk is a phasor of unit length
in the complex plane, oriented at phase ωtk. If the tk happen with a periodicity of 2π/ω,
then all the phasors point in the same direction and their sum will be very large. If, on
the other hand, the tk happen at random times, then the phasors are oriented randomly
and their sum will be small. In this way, the Fourier coefficient R̂(ω) reflects the degree
of periodicity of the point process at frequency ω.

8.4.6 Power Spectrum of a Point Process
By applying the definition in equation (8.63) for the power spectrum to the rate
function R(t), one finds the power spectrum of a random point process to be

P(ω) =
〈∣∣∣R̂(ω)

∣∣∣2〉= 〈∣∣∣∣∣∑
k

e−iωtk
∣∣∣∣∣
2〉

(8.96)

where the expectation is over instantiations of the process.3

8.4.6.1 Power spectrum of a Poisson process For example, consider a Poisson point
process with intensity λ, extending over the time period [0,T]. As discussed in section
3.2.6, we will want to evaluate the power spectrum at frequencies that are multiples of
the fundamental ωj = j ·2π/T, j=0, 1, . . . . Say that N is the number of events observed
in any instantiation of the process. We know that N follows the Poisson distribution
with mean μ = λT:

N∼Poiss(λT). (8.97)

Suppose now that N is large, so we can ignore the fluctuations of order
√
N. Then

the power at zero frequency is simply

P(ω =0) =
〈
N2
〉
≈ (λT)2. (8.98)

To evaluate power at the nonzero frequencies, note that each of the event times tk
is distributed uniformly throughout the interval [0,T]. So the phase ωjtk will be uni-
formly distributed in [0, 2π ], and thus the phasors e−iωjtk all point in random and
independent directions. The sum of those phasors,

z=
∑
k

e−iωtk , (8.99)

is the sum of N independent random unit vectors in the complex plane. If N is large,
one can invoke the central limit theorem to argue that this sum vector has a Gaus-
sian distribution around the origin with a variance that is the sum of the individual
variances—namely,

Var [z] =
〈
|z|2

〉
= 〈N〉. (8.100)

3. As usual, there are alternative definitions that differ by some normalization factor. If the
only goal is to compare power at different frequencies, that doesn’t matter.
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In conclusion,

P(ωj) ≈
⎧⎨⎩(λT)2, if j=0

λT, j>0.
(8.101)

So the homogeneous Poisson process has equal power at all frequencies (except ω =0):
a white noise spectrum.4

8.4.7 Shot Noise
Often the discrete events in a random point process are not observed directly, but rather
through some signal caused by each event. For example, every photon captured by a
photo-detector tube produces a short unitary blip of electric current. We observe the
time course of the current and want to infer the occurrence time of the blips. In such a
case, the time course of the unitary signal is called the shot, and the superposition of
all the shots is called shot noise.

Note that the shot noise signal F(t) results from a convolution of the point process
rate function R(t) and the shape of the individual shot S(t):

F(t) =
∑
k

S(t− tk) =
∫
R(t′)S(t− t′)dt′ =R(t) ∗ S(t). (8.102)

Recall that the Fourier transform of a convolution is equal to the product of the two
Fourier transforms (as discussed in section 3.2.4.4). Consequently, the same is true for
the power spectrum and

PF(ω) =PR(ω)PS(ω). (8.103)

This relationship gets used in both ways: Sometimes we know the shape of the indi-
vidual shot (e.g. for the photo-detector tube), and this allows us to infer something
about the point process that produces the shots. Other times, we are confident about
the spectrum of the point process, and thus we can learn something about the shape of
the individual shot. In particular, if R(t) is a Poisson point process, then the spectrum
PR(ω) is white, and therefore the spectrum of the shot PS(ω) has the same shape as that
of the measured shot noise PF(ω). See section 9.4.2 for an example.

8.4.8 Converting a Point Process to a Time Series
For practical calculations, one often converts a point process {tk} into a discrete time
series Ri with values of 1 or 0. A common form of conversion is binning of the point
process: choose a bin width �t and count the number of events in each bin

Ri = N((i+1)�t) −N(i�t)
�t

. (8.104)

Clearly, the timing of an event within each bin is lost in the process, so �t effectively
sets the time resolution of any subsequent analysis. Now one can apply the full battery

4. If λT is not large, one can follow the same logic to find the exact power spectrum. It will
still be white (namely, equal power at all frequencies except ω =0).
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of time-series analysis methods, including spectral analysis and cross-correlation
analysis.

However, a drawback of this approach is that it represents the point process very
inefficiently: Suppose that there are 100 events in 10 s, and we want to preserve their
timing to 1 ms. That produces a time series Ri with 10,000 values, even though {tk} has
only 100 values. To compute a correlation of two such processes (by brute force) requires
∼108 operations, compared to ∼104 if one worked with the event times directly. In
the old days when computations were done by hand, no one would have dreamed of
making such an inefficient change in representation from point process to time series.
These days, when computer speed is hardly a constraint for most scientific computing,
the Fast Fourier transform speeds up linear operators, and optimized routines exist that
work on sparse arrays, the cost can be negligible. On the other hand, if you are operating
in a big data regime that involves lots of events and very high time resolution, you may
reconsider your options.

8.4.9 Further Reading
Daley and Vere-Jones (2013) introduce point processes with the full mathematical
armamentarium. Brown et al. (2004) discuss additional point process methods in the
context of analysis of neural signals.

8.5 Dimensionality Reduction

Several subfields of biology have decidedly entered the area of big data owing to
revolutionary new methods for large-scale measurements. Today, one can measure
the expression levels of thousands of genes across thousands of different cells; or
the activity of thousands of neurons over many thousands of timepoints. To gain
any understanding from such high-dimensional data, one must somehow reduce the
number of dimensions.

One goal of dimensionality reduction is to find structure in the data. For exam-
ple, gene expression patterns of 10,000 genes may reduce to a few modules that group
together genes with similar dynamics. Another goal is to separate signal from noise:
the most dominant patterns in the data should get attention first. Another goal is visu-
alization: we have no way of representing 10,000-dimensional space, but we can draw
figures in two dimensions. Finally, one could argue that the whole process of scien-
tific understanding itself is one of dimensionality reduction, such that eventually the
meaning of a huge data set can be captured by a few equations interspersed with words
of text.

For the purpose of this section, we will assume that the data consist of T data points
xj, j=1, . . . ,T. Each data point consists of N measured variables xj = [x1j, . . . , xNj]�. For
example, xij might be the activity of neuron i at time j or the expression of gene
i in cell j. Sometimes we will write these data in the form of a single N×T data
matrix:

X=

⎛⎜⎜⎜⎜⎜⎝
x11 · · · · · · x1T
...

. . .
...

...
. . .

...
xN1 · · · · · · xNT

⎞⎟⎟⎟⎟⎟⎠ . (8.105)



202 Chapter 8

5

4

3

2

1

0

–1

–2
–6 –4 –2

m

w
xt

et

x1
0

x 2

Figure 8.18
A two-dimensional (2D) data set with 50 data points (yellow) and a 1D approximation,
illustrating the mean m, the first principal component w, the line corresponding to the
1D approximation (red), two examples of data points projected on that line (red circles), a
random data point xt , and the residual for that data point et .

8.5.1 Principal Component Analysis
Consider the 2×T data set in figure 8.18. Clearly, the two variables x1 and x2 vary
together, a strong pattern in the data. One is tempted to just draw a line through this
data cloud that gets as close as possible to all the data points. That line captures the
direction along which the data vary the most, so it serves as a first approximation of
the data set. With the proper definitions, discussed next, that line is called the “first
principal component” of the data. The direction perpendicular to it is the “second
principal component”; this is the direction along which the data vary the least. The
algorithm for finding those special directions is called “principal component analysis”
(PCA).

To formalize the goal of dimensionality reduction in the language of linear algebra,
we want to approximate the data vectors by a linear superposition of just a few basis
vectors with the smallest amount of error:

xj =m+ c1,jw1 + · · ·+ cD,jwD + e(D)

j . (8.106)

Here, m is a constant offset vector, wk is the kth basis vector or principal component
of the data cloud, ck,j is the coefficient of component k in data point j, and e(D)

j is the
residual of the approximation withD components for data point j. The goal is to choose
m, thewk, and the ck,j so as to minimize the average squared residual, which represents
the error of the D-dimensional approximation:
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E(D) = 1
T

T∑
j=1

e(D)�
j · e(D)

j . (8.107)

If D is much smaller than N, and the error E(D) is acceptably small, then one has
achieved successful dimensional reduction from N to D dimensions.

How can we find the best choices of the parameters m, wk, and ck,j? We do this by
differentiating the error in equation (8.107) with respect to the parameters, as shown
in exercise 10.18.

The solution tells us how to perform principal component analysis:

1. Compute the mean of the data cloud and subtract it from each data point

m= 1
T

T∑
j=1

xj

yj =xj −m.

(8.108)

2. Compute the covariance matrix as in equation (6.69) of the data

C= 1
T

T∑
j=1

yj ·y�
j . (8.109)

This is anN×Nmatrix. It is symmetric (see section 2.11.1) and positive semidefinite,
so it is guaranteed to have N eigenvalues, and they are all nonnegative.

3. Find the eigenvalues λk of the covariance matrix C and the associated eigenvectors
wk. Sort them in decreasing order of the eigenvalues: λ1 > λ2 > · · ·> λN . Normalize
all the eigenvectors, such that w�

k wk =1.
4. Then the principal component representation of the data is

yj =
N∑
k=1

ck,jwk, (8.110)

where

ck,j =w�
k yj. (8.111)

Equation (8.110) is an exact representation of the data, and there is no residual
error. Every data vector yj gets mapped into a coefficient vector cj = [c1,j, . . . , cN,j]�. This
coefficient vector also has N dimensions.

To achieve some dimensional reduction, let us cut off the sum in equation (8.110)
after the first D terms:

y(D)

j =
D∑
k=1

ck,j =m+
D∑
k=1

w�
k yjwk. (8.112)
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Each data point is now mapped onto just D coefficients. The resulting approxima-
tion x(D)

j corresponds to the orthogonal projection of xj onto the space spanned
by the principal components w1, . . . ,wD (see the red dots in figure 8.18). This D-
dimensional approximation to the data in equation (8.112) is guaranteed to have
the smallest possible residual. That is the special property of the principal component
representation.

How large is the error incurred by going from N to D dimensions? The total
variance of the data set is

V = 1
T

T∑
j=1

y�
j yj. (8.113)

This variance is equal to the sum of all the eigenvalues λk:

V =
N∑
k=1

λk. (8.114)

Furthermore, the error E(D) of the D-dimensional approximation in equation (8.107) is
the sum of the “unused” eigenvalues:

E(D) =
N∑

k=D+1

λk. (8.115)

This is also called the unexplained variance of theD-dimensional approximation. Vice
versa, one says the explained variance is

V(D) =
D∑
k=1

λk. (8.116)

How should one choose D? Of course, this depends on the research goals that
motivated the PCA. The trade-off is between lower dimensionality (low D) and lower
error (high D). One often shows a plot of λk versus k, called the eigenvalue spectrum
or scree plot (figure 8.19). If that plot shows a sudden break to lower eigenvalues, that
can be a reason to set the cut-off D at the break.

We illustrate these procedures with two example data sets.

8.5.1.1 Example: Spearman’s data In 1904, Spearman published “‘General Intelli-
gence,’ Objectively Determined and Measured.” This paper has historical importance
as the first notable application of factor analysis, a close relative of PCA. Second, it
put the psychological concept of “general intelligence” on a quantitative basis. Figure
8.20 reproduces just one data set from this study. The boys in an English village
school were ranked according to their performance in various subjects. Then Spearman
measured something seemingly unrelated—namely, their ability to distinguish sounds
of different pitches, as well as lights of different intensities and weights of different
mass.

Using the notation introduced here, each boy j is represented by a data vector xj
corresponding to a row in the table that contains the grades in the various subjects
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Sample scree plot, which suggests keeping only the first three principal components.

Figure 8.20
An excerpt from Spearman’s 1904 data set.
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Principal component analysis of data in Spearman (1904), “Experimental Series IV.” A:
Correlation matrix of the scores of T =33 boys in N=6 school subjects including pitch dis-
crimination. B: Scree plot of the eigenvalues λk. The first eigenvalue accounts for 68 percent
of the variance. C: Coefficients of the first principal component arranged as in panel A.

and sensory tests. Figure 8.21 presents a principal component analysis of Spearman’s
“Experimental Series IV”: The correlation matrix C (figure 8.21A) shows strong covari-
ance of the scores across all subjects, including pitch discrimination. In other words,
the typical boy tended to fare well or poorly in all subjects. This is reflected in the eigen-
value spectrum (figure 8.21B) which shows that a single principal component accounts
for 68 percent of the variance. The coefficients of that component (figure 8.21C) are
indeed positive along all the subjects. 5

Spearman concluded that a single factor explains much of the boys’ performance
in class, but also on seemingly unrelated tests of perceptual discrimination. That factor
eventually became known as “general intelligence.”

8.5.1.2 Example: Dimensionality reduction of neuronal population activity Consider
the example data set shown in figure 8.22A, which corresponds to the normalized activ-
ity of 50 neurons6. It is an N×T data matrix Y, with N being the number of neurons
and T being the number of time points. The activity is measured using a calcium indi-
cator, a fluorescent probe expressed inside neurons that increases its fluorescence when
the calcium concentration increases. Because the intracellular concentration of calcium
increases when a neuron is active, the fluorescence can be used as a proxy for neuronal
activity.

At first sight, one gets the impression that several neurons share the same pattern
of activity. Instead of considering 50 neurons, can we collect then into a smaller num-
ber of “neuronal components” that are linear combinations of the original neurons

5. The literature on PCA suffers from a good amount of redundant and confusing nomencla-
ture, including terms like “factors,” “weights,” “loadings,” and “scores.” In this book, we use
the term “principal component” to refer to one of the eigenvectors of the covariance matrix.
We use “PC coefficient” for the coefficient of a data point along that principal component.
6. Normalized activity implies that the fluorescence time series for each neuron is mean
subtracted and has unit standard deviation—see section (8.5.1.3).
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Figure 8.22
A: The activity of 50 neurons reported by a genetically encoded calcium indicator as a
function of frame number, where frames were collected at 3 Hz. B: The covariance matrix
computed from (A). C: Fraction of the variance explained by each of the first ten principal
components.
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Figure 8.23
Dimensionality reduction of the activity of N=50 neurons using PCA. A: The images illus-
trate the matrices Y≈WC. The dimensions of the matrices are shown on the top. The first
principal component is the first column of W. The coefficient of the data along the first
principal component is given by the first row of C. This row has larger coefficients than
those in the second row, and so on. This is a manifestation that the first PC explains more
of the variance than the second PC, and so on. B: We now keep just the first two neuronal
components. The temporal activity of the 50 neurons is reduced to a trajectory in this 2D
space. The time course is color-coded from magenta to green.

that explain most of the activity? In order to test this, one might perform principal
component analysis.

Following the procedure described in the beginning of this section referring to
8.5.1, we can compute the covariance matrix, shown in figure 8.22B. The eigenvec-
tors of this matrix are the neuronal principal components, and the eigenvalues report
the variance explained by each one. We plot these in the scree plot shown in figure
8.22C. The first five principal components together contribute almost 75 percent of
the variance in the data set (with the first two contributing almost 59 percent).

Using the first five principal components we can dimensionally reduce our data as
shown in figure 8.23A. This shows that although although there are 50 neurons, they
are strongly correlated in their time-varying activity. About 75 percent of the variance in
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Figure 8.24
Scatterplot of the 50 neurons showing their coefficients along the first two temporal
principal components.

their activity occurs in a five-dimensional subspace, and 59 percent in just two dimen-
sions. In figure 8.23B we plot the activity as a trajectory in the space spanned by the
first two principal components. Here, we can observe that it circles around the origin
with changing angular velocity. 7

What we have performed here is neuronal PCA. We could have also performed
temporal PCA by computing the covariance matrix of the N-dimensional data vectors
yj (one for each time point j) and then performing PCA on that matrix. That covariance
matrix is a T ×T-dimensional matrix so its eigenvectors, the temporal principal com-
ponents, would be T-dimensional. Temporal PCA would give us the time courses that
explain most of the variance across all the neurons. In fact, we will cluster the neurons
according to the coefficients of their fluorescence along the first two temporal principal
components in section 8.5.3 (see also figure 8.24).

8.5.1.3 Normalization and other preprocessing in PCA Sometimes, the components
xi that make up the data vector x= [x1, . . . , xN]� represent very different variables.
For example, Spearman’s measurement of pitch discrimination obviously uses a dif-
ferent scale from the grades of the mathematics teacher. In the example involving
neuronal data, the fluorescence of every neuron will depend on its size and how much
fluorophore it expresses. In other cases, the measurements may be of entirely differ-
ent physical quantities, like temperature and precipitation. Obviously, one needs to
account for such differences in units before computing the covariance matrix.

One popular method for normalization adjusts the scale on each variable so they
all have the same sample variance in the data set. This is known as z-scoring the data:
subtract the sample mean and divide by the sample standard deviation. This leads to a
preprocessed data set:

yj = [y1,j, . . . , yN,j]�, (8.117)

7. These data are from Petrucco et al. (2023) and in fact correspond to the heading direction
neuronal network of larval zebrafish, which keeps track of the direction the fish is heading
toward as it swims.
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where

yi,j = (xi,j −mi)/si, (8.118)

and

mi = 1
T

∑
j

xi,j, (8.119)

is the sample mean of the ith component and

si =
√√√√ 1
T

∑
j

(xi,j −mi)
2 (8.120)

is the sample standard deviation of the ith component. Mathematically, this is equiva-
lent to using the correlationmatrix rather than the covariancematrix for the eigenvalue
analysis. This is the method that we used for Spearman’s data.

A different approach comes from considering experimental uncertainties: If com-
ponent xi of the data vector is affected bymeasurement error σi, then it maymake sense
to normalize each component by its uncertainty. That is, preprocess the data to

yi,j = (xi,j −mi)/σi. (8.121)

In that case, the total residual E in equation (8.107) takes on the character of a χ2

statistic (see section 7.6.1), such that minimizing E is like maximizing the likelihood.
Other preprocessing steps include nonlinear transforms. For example, if xi has a

log-normal distribution in the data set, then a logarithmic transform yi = log xi will
produce a more nearly normal variable, and thus a nicer shape to the data cloud.

Whatever preprocessing steps you apply, try to understand why you are doing it
and what the consequences are for structures that might appear in the processed data.

8.5.2 Other Dimensionality Reduction Techniques: NNMF and ICA
Both linear regression and PCA can be interpreted as reducing the dimension of an
N×T data matrix X according to

X≈WC, (8.122)

whereW isN×D andC isD×T. The rows ofC form the basis of the newD-dimensional
space and W are the components of the data in terms of this basis.

Linear regression and PCA impose different constraints on the basis set C. Linear
regression minimizes the unexplained variance in the dependent variables, whereas
PCA minimizes the total unexplained variance along all dimensions. PCA leads to an
orthogonal basis set, consisting of the principal components, which can be computed
as the eigenvectors of the correlation matrix.

There are versions of dimensionality reduction that call for different conditions
on the basis vectors. For example, independent component analysis (ICA) tries to
explain the data as the weighted sum of a small number of signals, just like PCA, but
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in this case, with the requirement that these signals should be statistically indepen-
dent of each other, as opposed to uncorrelated, which was the condition imposed by
PCA. Another version, called nonnegative matrix factorization (NNMF), imposes the
constraint that the matrices W and C contain no negative elements. This arises when
the data in question are naturally constrained nonnegative, such as intensities, con-
centrations, neuronal firing rates, and probabilities. These methods don’t come with
an analytical closed-form solution, like PCA, but efficient algorithms exist for deriving
the components numerically.

8.5.3 Clustering
Dimensionality reduction simplifies the data distribution by allowing us to focus on a
subspace of the original measurement space. However, within that subspace, the data
are still widely distributed. An even greater simplification could be accomplished if
the data form discrete clusters within the subspace. Hence there is broad interest in
techniques that identify discrete clusters in a distribution.

Continuing with the 50-neuron data set here, we now replot the neuronal
responses in the space of the first two temporal principal components (figure 8.24).8

Note that these two components already explain 59 percent of the variance in the
data set. One does get the vague impression that the points bunch together in certain
regions of the space.

A popular method to identify clusters is called k-means clustering. This algorithm
asks the user what number k of clusters should be found, and given k, it identifies the
optimal allocation of data points to k clusters. Its criterion is tominimize the sum of the
squared distances between every point and the cluster centroid to which it is assigned.

Choosing the number of clusters for k-means is not a trivial matter. One way is to
apply the elbow method, similar to the interpretation of scree plots in PCA: repeat the
analysis for a range of cluster numbers k, plot the sum of the squared distances s as a
function of k, and check whether there is a critical number k beyond which s no longer
decreases very much. This transition from a steep decrease in s(k) to a more gradual
decrease is called “an elbow.” Figure 8.25 shows s(k) for the neuronal data presented
here. In this case, the elbow is not obviously apparent, so we show the clustering into
three and six clusters, respectively, to serve as a comparison. Figure 8.26 shows that
each of the clusters represents a different time course of neural activity.

8.5.3.1 Example: Otsu’s image background separation method Image processing is
important in many biological applications, and many experiments rely on the correct
quantification of “particles” within these images. An important step in this analysis is
separating the background of the image from the “particles” that need to be counted.
These “particles” can be fluorescent cells, stained mitochondria, or birds flying in the
sky.

Otsu’s method is a simple method that uses k-means clustering to do that. It
assumes that the pixel intensities cluster into two groups, one corresponding to the
background and the other to the foreground. 9 Figure 8.27 shows how this is applied.

8. Note that in section (8.5.1.2), we performed neuronal PCA, in which each PC was a linear
combination of the 50 neurons. Here, we have performed temporal PCA, in which each PC
is a fluorescence time series, and the fluorescence time series of each individual neuron can
be expressed as a linear combination of these PCs.
9. Note that this is a nontrivial assumption. A continuum of values can always be clustered
into two clusters, although this does not necessarily mean that there are two clusters.
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Figure 8.25
K-means clustering of the 50 neurons in the space of the first two PCs. Left: Unexplained
variance as a function of the number of clusters. Middle: Three clusters and their centroids
(stars). Right: Six clusters and their centroids (stars).
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Figure 8.26
Activity traces corresponding to the cluster centroids of the figure 8.25, for both three and
six clusters. Activity traces of neurons are reordered in such a way that neurons belonging
to the same cluster appear together for the three and six clusters shown here.

There are many extensions of this simple algorithm; the easiest one to under-
stand is a two-Gaussian mixture model (discussed next). Nevertheless, they all rely to
some extent on clustering pixel intensities, taking into account assumptions on the
distributions of these intensities or the morphology of the particles of interest.

8.5.3.2 Other clustering algorithms The k-means clustering algorithm presented
here is by no means the only one. In fact, k-means implicitly assumes certain features
that are not always assured, such as that all clusters have a spherical shape and the same
variance, and similar numbers of members.

Other clusteringmethods relax some of these assumptions. Gaussianmixturemod-
els (GMMs), for example, do not assume a spherical distribution or equal variance. They
return the probability that each sample belongs to each cluster. Nevertheless, GMMs
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Figure 8.27
Left: Grayscale image (top) and the associated histogram (bottom). Right: Otsu’s method
assumes that pixel intensities cluster into two values, corresponding to background and
signal, respectively. It divides the pixel intensities into these two clusters (shown in magenta
and purple) and returns a binarized image (top).

do use the expected cluster number as an input into the algorithm, which needs to be
decided a priori or explored empirically, just as in k-means.

Other algorithms, such as hierarchical clustering, return a branching tree where
each sample is a leaf. By considering clusters to be small twigs, or small or large
branches, the data can be separated into different numbers of clusters in a graded fash-
ion. It is also possible to use more exotic distance metrics, other than the standard
Euclidean metric.

On the whole, clustering is a bit of an art form. It is always possible to perform
clustering, even when the data are drawn from a continuous distribution. A number
of quantitative criteria have been proposed to evaluate the significance of clusters. In
practice, it is important to find some visualization of the clusters, so the user can gain
intuition for the results and evaluate visually whether the clusters make sense and can
be interpreted usefully for the research purpose at hand.

8.6 Information Theory

Life is an interplay of energy, entropy, and information.

—Eigen (2019)

Public discourse these days is awash with loose talk of “information,” often with num-
bers thrown in the mix, measured in gigabits or terabytes. Typically, this arises when
a message needs to be transmitted from one place to another, such as to stream a
television show on yourmonitor or to store a large document in a file. Such signal trans-
mission also is ubiquitous in biological systems: the genome communicates through
cellular machinery to specify the cell’s proteome; cells signal to each other in the course
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of development or an immune response; the eye signals to the brain with messages
about our visual surroundings; the brain signals to muscles in order to respond. Under-
standing these processes (and more) benefits from a rigorous quantitative treatment of
this substance called information.

Fundamentally, information leads to the removal of uncertainty (Shannon and
Weaver, 1964). For illustration, consider a simple children’s game: A says “I am thinking
of a number between 1 and 16.” B has to find the number by asking A yes/no questions.
At the outset, B is uncertain about the number. With every question (if appropriately
posed), B gains more information until there is no remaining uncertainty, and B knows
the number exactly.

Howmany questions does B need to ask? An inefficient strategy would be: “Is it 1?,”
“Is it 2?,” and so on. On average, this requires about eight questions to achieve success.
A more streamlined approach is to ask each question so that it splits the remaining
range of possible answers in half, such as starting with “Is it 8 or less?” This strategy
requires only four questions to achieve success. In general, if A’s number ranges from 1
to 2n, then n questions are needed to nail it down precisely. In this case, we say that B
had an uncertainty about A’s number equal to n bits. During the question-and-answer
game, that uncertainty was completely removed, so A transferred n bits of information
to B.

8.6.1 Entropy
This leads us to a quantitative definition of uncertainty: The uncertainty about a
random variable X is equal to the minimal number of yes/no questions required to
determine X precisely. The uncertainty is also called entropy, denoted as H(X) and is
measured in units of bits.

If X∈ {x1, . . . , xn} is a discrete random variable and all the outcomes are equally
likely a priori, as in the guessing game, then

H(X) = log2 n. (8.123)

Generally, X does not follow a uniform distribution. For example, X might be the
outcome of a roll of two dice (as discussed in section 6.3.1). If X follows the probability
mass function P(X), then

H(X) = −
∑
i

P(xi) log2 P(xi). (8.124)

Note that equation (8.123) is just a special case of equation (8.124).
This choice for measuring entropy is the only mathematical expression that satis-

fies two common-sense expectations of such a measure: (1) It should be positive. (2) If
two variables X and Y are statistically independent, the uncertainty about both should
be the sum of the uncertainties about each individually.

Example 8.7 (Bernoulli distribution) Remember that a Bernoulli random variable is
one that can take two outcomes, with probability p and 1− p, respectively, such as the
outcome of a coin toss (as in section 6.3.5). If X∼Bern(p), then the entropy is (figure
8.28)

H(X; p) = −p log2 p− (1− p) log2(1− p). (8.125)
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Figure 8.28
The entropy of a Bernoulli variable with bias p.

For what value of p is this entropy a maximum? Of course, one can look for the
extremum of H(X; p) with respect to p. For a simpler argument, note that the entropy
must be symmetric under the exchange of p with 1− p. Therefore, the maximum has
to be at p=0.5, when the two values are equally likely. On the other hand, when p=0
or p=1, then the value of X is certain and the entropy H(X) =0. For these calculations,
it is useful to remember that

x log x−−−→
x→0

0. (8.126)

�

Example 8.8 (What is the entropy of English?) It is well worth reading Shannon’s paper
on this topic (Shannon, 1951). He asks: When reading an English text, what is the
uncertainty about the next character on the page?

A naive estimate goes as follows: Ignoring spaces and puctuation, there are 26
letters, so using equation (8.123), the entropy H(C) of the next character C is

H0(C) = log2 26=4.70 bits. (8.127)

However, the characters don’t appear at equal frequency, so one should measure
those frequencies and use the more general expression in equation (8.124) to get

H1(C) = −
26∑
i=1

pi log2 pi =4.08 bits. (8.128)

As it turns out, consecutive characters are not independent of each other: Certain
letter pairs (like “QU”) happen much more often than expected from the product of
their individual frequencies. By tabulating the frequencies of letter pairs, one gets to
H2(C) =3.56. Shannon pursues this further, estimating the frequencies of tri-grams and
words, and with each step obtains a lower entropy estimate. Eventually, he engages
human subjects in a guessing game: after reading 100 characters in a book, they must
guess the next one. From the number of guesses required, Shannon estimated the true
entropy of English as somewhere between 0.6 and 1.3 bits/character:

0.6<H∞(C) <1.3. (8.129)
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This exercise foreshadows two interesting insights: First, the entropy of a symbol
string depends not only on the frequency of each symbol, but on the correlations
across symbols. Second, it should be possible to store English text in a very effi-
cient way: the calculations suggest that one only needs about 1 bit per character.
Instead, the popular ASCII code for English uses 8 bits per character—a great waste of
bits. �

Example 8.9 (The entropy of DNA) Genetic material is stored in chromosomes, each
one consisting of a long macromolecule of double-stranded DNA. Each strand of DNA
is a long sequence of nucleotides that have one of four possible values: adenine (A),
thymine (T), cytosine (C), or guanine (G). What is the entropy per base-pair of a long
DNA sequence?

As in the case of English, we can start with the naive estimate, assuming that all 4
nucleotides appear at equal frequency, pi = 1

4 , where i∈ {A,T,G,C}:

H0 = −
∑

pi log2(pi) =2bits per base-pair. (8.130)

In actuality, the four bases do not appear at equal frequency. For example, in
human chromosome 11, one finds that pi = [0.289, 0.289, 0.211, 0.211]. With that
knowledge, the entropy is

H1 = −
∑

pi log2(pi) =1.9822bits per base-pair. (8.131)

Further, it turns out that two successive nucleotides (di-grams) are not statistically
independent. Again, one can estimate the frequencies of di-grams from the human
chromosome 11 data to find a lower estimate:

H2 =1.9350bits per base-pair. (8.132)

As in the case of English, knowledge of the statistical structure of the signal serves to
reduce the uncertainty.

In coding regions of the chromosome, DNA carries the instructions for assembling
amino acids into proteins. You can further explore the information-theoretic aspects
of this genetic code in exercise 10.21. �

8.6.2 Communication Channel
Shannon (1948) formalized the process of communication between a source and a
destination as follows (figure 8.29):

On the source side, the message gets encoded into a signal to be conveyed on a
channel. During transmission on the channel, that signal may be corrupted by noise.
On the destination side, the received signal gets translated back into an interpretable
message. The context of Shannon’s work was telecommunications, so the channel in
question was typically a telephone transmission line or a wireless connection. Each of
these channels suffers from a different kind of noise corruption. Ideally, the transmitters
and receivers must be adapted to the kind of noise encountered, so as to allow error-free
transmission regardless.

As it turns out, this framework lends itself to illuminate a vast number of phenom-
ena, including many cases of signaling and communication in biology.
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Figure 8.29
Shannon’s framework for communication.

8.6.3 Mutual Information
Within this framework, suppose that the transmitter puts signal X on the channel and
the receiver observes signal Y. Because of transmission noise, it is possible that X 
=Y.
Suppose that X and Y follow a joint distribution PXY(X,Y). How much information
about X does the receiver get from observing Y?

As discussed previously, information corresponds to a reduction of uncertainty.
Prior to receiving signal Y, the receiver’s uncertainty aboutX is the entropyH(X), which
depends only on the marginal probability distribution PX(X):

H(X) = −
∑
x∈X

PX(x) log2 PX(x). (8.133)

After the receiver sees the particular symbol Y = y, the probability distribution of X
shifts from PX(X) to PX|Y(X|Y = y)—namely, the probability conditional on observation
of y. Now the remaining entropy is

H(X|y) = −
∑
x∈X

PX|Y(x|y) log2 PX|Y(x|y) (8.134)

and the information gained in the process is

I(X|y) =H(X) −H(X|y). (8.135)

To assess the average gain over many transmissions, one averages this expression
over all possible outcomes of Y:

I(X,Y) =
∑
y∈Y

PY(y)I(X|y)

= −
∑

x∈X, y∈Y
PXY(x, y) log2

(
PXY(x, y)
PX(x)PY(y)

)
.

(8.136)

The quantity I(X,Y) is called the mutual information between the random vari-
ables X and Y. It tells us how much uncertainty about X is removed by measuring
Y. Note that the expression for I(X,Y) is symmetric in X and Y. So the information
gained by the receiver about the transmitted message is equal to the information that
the transmitter has about what appears at the receiver.
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Note the special case in whichX and Y are statistically independent. Then the joint
probability factors into the product of the marginal probabilities as in equation (6.5.4),
so the log term vanishes and the mutual information is zero. This is the extreme of a
lousy communication channel, in which noise completely dominates the signal.

8.6.3.1 Mutual information for continuous variables Suppose that the symbol X
placed on the channel and the receiver symbol Y are both continuous random vari-
ables, such as an electric voltage. Now the joint distribution of X and Y is a probability
density function P(x, y). The mutual information extends in a straightforward way by
simply converting the sum to an integral:

I(X,Y) = −
∫
x,y

PXY(x, y) log2

(
PXY(x, y)
PX(x)PY(y)

)
dxdy. (8.137)

8.6.4 Channel Capacity
The capacity of a communications channel is the maximum rate of information that
can be transmitted down the channel, measured either in bits per symbol or bits per
unit time. This maximum value of the mutual information between output and input
is taken over all possible distributions of the signals, given some constraint.

8.6.4.1 Example: Binary channel with noise For example, consider the transmission
of binary symbols x∈ {0, 1} across a noisy channel that occasionally changes a 0 into a 1
or vice versa. Suppose that the probability of error (of either kind) is q. So the probability
of the output Y conditional on the input X is

PY|X(y|x) =
{
1− q, if y= x
q, if y 
= x.

(8.138)

To optimize the use of this channel, we have only one degree of freedom—namely,
the fraction of time we use 0 and 1 for X. Because the channel properties are symmetric
with respect to swapping 0 and 1, the only plausible optimum is when we use both
symbols at equal frequency10. In that case, the channel capacity becomes

C= I(X,Y)opt =1+ q log2 q+ (1− q) log(1− q). (8.139)

In this case, the constraint is that the signal can be either 0 or 1, and the free
parameter is the fraction of 0s and 1s that are present. You can explore what happens
if the channel’s errors are asymmetric in exercise 10.20.

8.6.4.2 Example: Gaussian channel with noise Now consider a continuous channel
with Gaussian noise. The signals X and Y are continuous variables, and the channel
adds a random noise with Gaussian distribution, such that y= x+n with n∼N (0,N).
Also, we suppose that the transmitter has limited signal power, so the variance of X is
fixed: Var[X] = S2. Then one can show that the capacity is

C= 1
2
log2

(
1+ S2

N2

)
. (8.140)

10. You can save a lot of effort with symmetry arguments like this.
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To transmit at this limit, the optimal symbol distribution of X is Gaussian with
variance S: X∼N (0, S).

Note the result in equation (8.140) is logarithmic in the signal-to-noise (SNR) ratio
on the channel. It has a simple interpretation: For large S2

N2 , C≈ log2
S
N . But S

N is the
number of signal levels that are separated by the noise amplitude. So C is simply the
log2 of the number of distinguishable signals (i.e. the number of bits needed to specify
the signal to within the noise amplitude).

8.6.4.3 Redundancy The redundancy R of a communication link is the degree to
which it fails to use the full channel capacity. Redundancy is generally a consequence
of nonoptimal symbol use, namely, when the transmitter fails to encode the message
appropriately for the channel. Redundancy is expressed as a fraction of the capacity
wasted:

R=1− I(X,Y)

C
. (8.141)

For example, the ASCII code that uses eight binary digits to encode a character is a
rather inefficient representation of English. Using Shannon’s estimate that the entropy
of English is about 1 bit/character, one concludes that the ASCII code has a redundancy
of R≈7/8.

8.6.5 The Channel Coding Theorem
So far, we have mostly engaged in definitions of information-theoretic quantities. But
what is the payback for using this way of measuring information? One powerful result
is the channel coding theorem: Given a noisy channel with capacity C, one can use
it to transmit error-free messages at an information rate up to C.

It seems counterintuitive that one can use a noisy channel for error-free commu-
nication at all. Obviously, this requires an ingenious encoding and decoding scheme
that makes the message robust to the kinds of disruption that occurs on the channel.
Notably, the theorem does not spell out how to achieve this, and much engineering
effort goes into devising clever encoders and decoders to match messages to a chan-
nel. However, the theorem tells you when to stop trying. In many cases, it is easy to
compute the capacity of the channel (see sections 8.6.4.1 and 8.6.4.2), and you can
stop improving your encoders once the information rate that they support gets close
to C.

In a number of biological applications, it is possible to compute the capacity C
for a given signaling pathway, starting from an understanding of signal and noise in
the system. Then one can ask how much information actually passes through that
channel. In a few cases, the information rate seems to approach the capacity of the
channel, suggesting a certain optimization of the encoding and decoding mechanisms
(Tkacik and Bialek, 2016).

8.6.6 The Data-Processing Inequality
Consider a signaling chain from X to Z through an intermediate signal Y:

X→Y →Z. (8.142)
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Along such a chain, the mutual information can only decrease. In particular,

I(X,Z) < I(X,Y) and I(X,Z) < I(Y,Z). (8.143)

In other words, along a signaling chain information can only be lost, not created.
This has consequences for the capacity: if a signaling chain should have capacity C,
then each individual link must have capacity ≥C.

In biology, we find that a signal frequently changes its physical identity along the
way. For example, communication in the nervous system alternates between electrical
voltage across the membrane, calcium concentration at a synapse, neurotransmitter
concentration in the synaptic cleft, ionic current into the dendrite, and back to mem-
brane voltage. Information theory is agnostic to the physical embodiment of a signal,
and this is one of its chief attractions. At every stage along the way, one can measure
rates and capacities in the universal unit of bits, and interpretation of those results is
supported by the theorems of information theory.

8.6.7 Further Reading
The founding document of information theory is still one of the most readable intro-
ductions. Shannon and Weaver (1964) present the original papers with additional
didactic material. A good technical reference is Cover and Thomas (2012), and a sur-
vey of biological applications can be found in Tkacik and Bialek (2016). Nelson (2022)
explainsmany of the physicalmechanisms bywhich living organisms gain information
about their surroundings.
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stable, 262, 264, 264f , 265, 266f
in 2D, 267f , 268f , 270f
unstable, 261–262, 264, 264f , 265, 266f

Flow, 260, 261–262
Flow field, 260f
Fluctuation correlation analysis, 228–230,

229f
Fluorescence microscopes, 55
Fluorescence time series, 206n6

Fold change detection, 303–306, 304f
feedforward loop, 304
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Fourier series, 66–69, 74t
Fourier transforms, 60–74
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cell cycle experiment, analysis of, 88–90,
89f , 90f
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multivariate, 138–140, 139f
standard deviation, 133

Gaussian function, 62–63, 62f
Gaussian kernel, 91, 92f
Gaussian mixture models (GMMs), 211–212
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Information theory, 212–219
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also Poisson process
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Instability, dynamic, 295–296, 296f
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translational invariance, 56–57
X-ray scattering, 86–87

Line attractors, 267f , 268, 272, 310, 310f
Line of fixed points, 272
Line repellers, 268, 272
LN model. See Linear-nonlinear model of

neural coding
Loading phase, of mutual inhibition, 310,

310f
Locus, 230
Locusts, 27
Logarithms, 8, 9f
Log-normal distribution, 144
Lorenz, E. N., 291–292
Lotka-Volterra model, 273–274, 281, 285
Low-pass filter, 91, 92–95, 92f , 94f , 95f , 96
Lucy-Richardson algorithm, 102
Luria, Salvador, 118, 160, 221, 237
Luria-Delbrück fluctuation test, 118–119,

118f , 221–226, 222f , 225f , 226f
Lyapunov exponent, 292
Lynx vs. hare example, 281–285, 284f

Macaca fascicularis, 27
Macaque monkeys, 308
Magnification ratio, 76
Maintenance phase, of mutual inhibition,

310, 310f
Manifolds, 271
Mann-Whitney U statistic, 164
Mann-Whitney U-test, 164
Marginal distribution, 136, 137f
Marginal probabilities, 163n9
Markov model, 228f
Markov process, 187–188, 188f . See also

Discrete Markov process
Master equation, 191
Mathematical notation, 3
Matrix, 32

diagonalizing, 50–53
function of, 52–53
Hermitian, 46, 51
multiplication of, 33, 34f
multiplication of two, 37

powers of, 52
real symmetric, 51
special properties, 46

Matrix algebra, 36–40, 37f
determinants, 38–40, 39f
identity matrix, 37
inverse formula, 40
inverse matrix, 38, 40
singular matrices, 40

Matrix product, determinant of, 40
Maxima, 11–12, 12f
Maximum entropy, 226n3
Maximum likelihood estimation, 145–150,

157n4
for Gaussian distribution, 148–149
sample mean, 149–150
sample variance, 150, 157
for various distributions, 150

Maximum-likelihood estimators (MLEs),
166, 167, 169, 222

Mean
Bernoulli distribution, 123
binomial distribution, 125
continuous probability distribution,
130–131

of a distribution, 122
Gaussian distribution, 127, 133
geometric distribution, 128
independent Gaussian random variables,
sum of, 142

of multivariate distribution, 136
Poisson distribution, 126
probability density, 141
of random processes, 189
random variables, sum of, 140
sample, 141
uniform distribution, 131

Mean phenotype, 233–234
Membrane, capacitance of, 320
Membrane, conductance of, 320
Membrane potential, 311–312, 321f
Mendel, Gregor, 162, 162n7
Messenger ribonucleic acid (mRNA),

193–194, 299n1, 300, 300f
Metric, 44
Microscopy, 75–82, 75f

Airy disk, 80–81, 81f , 102
crystal analysis, 82–85, 82f , 84f , 85f
deconvolution, 100–102, 102f , 104
diffraction at aperture, 77–79, 78f
point-spread function (PSF), 81–82,
100–101

simple microscopes, 76–77, 76f
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Minima, 11–12, 12f
Mirror sources, 183, 184f
Model hypotheses, 161f
Monkeys

binocular rivalry and, 308, 309f , 310
Macaca fascicularis, 27

Monoecious organisms, 230, 235n7
Morphogenesis, Turing model of, 292–298,

298f , 313–314
Morphogens, 292, 297, 312–313
Multinomial distribution, 160
Multiple random variables, 135–142

in biology, 135
independent random variables, 137–138,
224

joint distribution, 135–137, 136f , 137f
marginal distribution, 136, 137f
multivariate Gaussian distribution,
138–140, 139f

repeated measurements, averaging,
141

sum of independent Gaussian random
variables, 141–142

sum of random variables, 140–141
Multiple regression, 168–170, 169f
Multiplication of a matrix and a vector, 33,

34f
Multivariate Gaussian distribution,

138–140, 139f
Multivariate integrals, 18–19
Mutual information, 216–217, 219
Mutual inhibition, 307, 307f

decision phase, 310, 310f
flexible control of, 308–311, 309f , 310f
maintenance phase of, 310, 310f
synchronized oscillation and, 311–312,
311f , 312f

Myosin, 95

Narrow-sense heritability, 236
National Research Council, 1
Natural selection, 233–236, 234f
Negative feedback loop, 299, 300f , 316
Neural coding, 238–244

information capacity of neuronal spike
train, 241–243

information rate of neuronal spike train,
243–244, 243f

linear-nonlinear model of, 238–241,
238f , 239f

reverse correlation analysis, 240–241
Neural decoding, 243
Neuronal communication, 318–323

action potentials, mechanism of,
319–322, 320f , 321f

electrical signals, 318–319
integrate-and-fire model, 322–323, 323f

Neuronal membranes, 228–230
Neuronal PCA, 208, 210n8
Neuronal population activity, 206–208,

207f , 208f
Neuronal spike train, 239, 241–244, 243f

information capacity of, 241–243
information rate of, 243–244, 243f

Neurons
binocular rivalry and, 306–308, 307f ,
308f , 309f , 310

electrical pulses, 319
equivalent circuits, 319, 320f
integrate-and-fire model, 322–323,
323f

mutual inhibition and, 311–312,
312f

Nodes, 272, 288f . See also Stable nodes;
Unstable nodes

Noise, 75f . See also Signal-to-noise (SNR)
ratio

binary channels and, 217
in communication, 215, 216, 216f
Gaussian channels and, 217–218
periodic signal, separating from, 87–88,
88f

Wiener filtering and, 84, 99–100, 99f ,
101–102, 105

Nonlinear center, 283
Nonlinear dynamics, 257, 258–259

chaos, 291–292, 292n1
exercises, 325–327
in three or more dimensions, 291
Turing model of morphogenesis,
292–298, 313–314

Nonlinear dynamics, applications of,
299–323

bistability, 306–312
circadian rhythms, 314–318, 315f
fold change detection, 303–306, 304f
neuronal communication, 318–323
repressilators, 299–303, 300f
Turing patterns, 312–314, 313f , 314f

Nonlinearity, 240
Nonnegative matrix factorization (NNMF),

210
Nonparametric tests, 164
Non-24 subjects, 315–316
Normal distribution, 126, 153, 153n1
Normal form, 265, 266f
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Normalization, 122, 130
Normalized vectors, 44
Normal matrix, 46
Notation, mathematical, 3
Nucleotides, 194
Nullclines

closed orbits and, 282, 283f
definition of, 275
flows on, 279, 287
in mutual inhibition, 310–311, 310f

Null distribution, 153
Null hypotheses

in Luria-Delbrück fluctuation test,
221–223, 222f

significance testing, 152–153
in statistical tests, 165
t-test and, 156–157, 157f , 159
z-test and, 154f , 156

Null vectors, 29
Numerical aperture, 79
Numerical Recipes, 60n1
Nyquist frequency, 97, 98

Objective lens, 76, 76f , 79n2
Offspring population, propagation of

selection effects, 235–236
Ohm’s law, 92
1D

phase points in, 266
random walks in, 176–177, 177f

One-sided z-test, 155
Operator algebra, 34–35
Operators. See also Linear operators

Hermitian, 51
identity, 35–36, 39
inverse, 35–36
reflection, 34f , 42f
transform of, 42–43

Optimal estimation. See Estimation, optimal
Orbits, closed, 267f , 268, 281–285, 282f
Orthogonal matrix, 46
Orthonormal basis set, 44–46
Oscillations

in biology, 257
in fur trade, 283–285, 284f
limit cycles, 316f
mutual inhibition and, 311–312, 311f ,
312f

phase point and, 266
of repressors, 303f
synchronized, 311–312, 311f , 312f
timescale of, 258f
Zeitgeber and, 317–318, 318f

Otsu’s image background separation
method, 210–211, 212f

Output signals, noise and, 75f

Parametric distribution, fit to, 162–163
Parental population, natural selection in,

233–235, 234f
Parseval’s theorem, 63, 100
Partial derivatives, 17–18
Particles

Brownian motion and, 175–176, 176n1,
176f , 179f

number of, 223n1
Pattern formation, 295–296
Pearson’s chi-square statistic, 160, 223
Periodicity

cell cycle experiment, analysis of, 88–90,
89f , 90f

in crystal analysis, 84
detecting, 87–90
periodic signal, separating from noise,
87–88, 88f

Phase diagram, 261f , 287f , 288f
Phase plots, quantitative, 279–280, 279f
Phase points

definition of, 260, 260f
flow and fixed points, 261
limit cycles, 302
linearization and, 268
in one dimension, 266
oscillations and, 266
oscillators and, 317f
in 2D, 270

Phase portrait, 275f , 276, 279, 280f , 283f
Phase space, 260, 261, 266, 267, 302, 303f
Phasors, 20–21, 22, 77
Phenotype, changes in, 233–236, 234f
Photons, ability to see, 236–237, 237f , 238
Photoreceptor cells, light response of,

237–238
Phycomyces, impulse responses and, 26
Pigmentation patterns, 313–314, 313f
Pitchfork bifurcation, 307
Planar electromagnetic wave, 77
Poincaré-Bendixson theorem, 287–288, 291
Poincaré oscillator, 316
Point processes, 196–201

inhomogeneous Poisson process, 198. See
also Poisson process

intensity function, 197
Poisson process, 197
power spectrum of, 199–200
shot noise, 200
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spectral analysis of, 198–199
stationary, 197
time series, converting to, 200–201

Point-spread function (PSF), 81–82, 100–101
Poisson distribution, 125–126, 126f , 127f ,

133, 222, 237
Poisson probability distribution, 118
Poisson process, 132, 197, 198, 199–200,

237
Polar coordinate systems, 16, 16f
Pollination, 175
Pooled sample variance, 159
Population genetics, 230–236

definition of, 230
genetic drift, 231–233, 233f
genotypes, frequencies of, 230–231
ideal properties, 230, 230n4
natural selection, effects of, 233–236, 234f

Positive matrices, 51
Posterior distribution, 151f
Posterior probability, 150–151
Potassium conductance, 320, 321f
Potassium ions, 319–320
Power of the test, 153
Powers, 7, 8f , 52
Power spectrum

of discrete Fourier transforms, 71–72, 72f
of linear systems, 66
of point processes, 199–200
of Poisson process, 199–200
random time series and, 189–190, 191f
of a signal, 63–64
single-sided, 72
of a square pulse, 71f
of white noise, 84

Predator-prey systems, 281–285, 283f , 284f
Preexisting mutation model, 118–119
Prefrontal cortex (PFC), 308, 310, 311
Price equation, 234
Principal component analysis (PCA),

166n10, 202–209, 202f , 205f , 206n5
constraints of, 209–210
neuronal, 208, 210n8
neuronal population activity, 206–208,
207f , 208f

normalization and preprocessing,
208–209

Spearman’s data, 204–206, 205f , 206f
temporal, 208

Prior distribution, 150
Probability and statistics

applications of (see Probability and
statistics applications)

in biology, 117
central limit theorem, 142–144, 143f ,
158n5, 162

conditional, 120–121
definition of, 119, 119n1
dimensionality reduction, 201–212, 202f
discrete random variables, 121–128, 197
distributions of, 121f
events and, 119–121, 120f
evolution and, 117
exercises, 245–254
hidden Markov models, 192–196, 192f ,
196f

information theory, 212–219
joint, 120
notation, 121n2, 124n5
point processes, 196–201
random time series, 186–192
random walks and diffusion, 175–186
theory of, 117

Probability and statistics applications
Luria-Delbrück fluctuation test, 221–226,
222f , 225f , 226f

neural coding, 238–244
population genetics, 230–236
quantitative genetics, 230–236
signal processing, 226–230
vision at quantum limit, 236–238

Probability density, 130, 131f , 134–135,
134f

Probability distribution, 121
Bernoulli distribution, 123, 123n4, 123f ,
213–214, 214f

binomial distribution, 123–124, 125,
125f , 126, 127f

display of, 121
Gaussian distribution (see Gaussian
distribution)

geometric distribution, 128, 128f , 132
mean of, 122
normalization, 122
notation, 134n7
Poisson distribution, 125–126, 126f ,
127f , 133, 222, 237

standard deviation, 123, 133, 142
variance, 122–128, 130–131, 133, 140,
141, 189, 204

Probability distribution function, 129
Probability mass function, 121
Product of eigenvalues, 51
Product rule, 10
Projection operators, 36f
Protein concentrations, 300
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Protein dynamics, 95–96, 96f
Protein motors, 95
p-values, 223

Quantitative genetics, 230–236
Quantitative phase plot, 279–280, 279f
Quotient rule, 10

Rabbits vs. sheep example, 273–280, 275f ,
281f

Rademacher distribution, 123n4
Random time series, 186–192

correlation function and power spectrum,
189–190, 191f

definition of, 186
discrete Markov process, 190–192, 191f
Markov process, 187–188, 188f
power spectrum and, 189–190, 191f
random process, moments of, 189
stationary process, 186–187

Random variables, 121
in biology, 175
function of, 134
independent, 137–138, 224
multiple, 135–142, 224
probability density of, 134, 134f
sum of, 140–141

Random walks, 179f
Brownian motion, 175, 176f
definition of, 175
in higher dimensions, 180–181
in 1D, 176–177, 177f
in 2D and 3D, 180–181

RC filter, 92–95, 94f , 95f
Reaction, in Turing model, 294
Reaction-diffusion equations, 294
Real Fourier series, 69
Real Fourier Transform (RFFT), 89
Real matrix, 46
Real symmetric matrix, 51
Reconstruction, 98–99, 103f
Redundancy, 218
Reflecting boundaries, 183, 184f
Reflection operator, 34f , 42f
Regularization, 102
Regular operators, 36
Relative fitness, 233, 234–235, 236
Relaxation oscillators, 288
Removal of uncertainty, 213, 216
Repressilators, 299–303

bifurcations and, 302
definition of, 299
dimensional scaling, 300

fixed point of, 302f
model of, 299–300, 300f
numerical simulation, 302–303, 303f
oscillation, 303f
qualitative analysis, 300–302, 301t, 302f
trajectory and, 302, 303f

Residual sum of squares, 166, 167, 169
Resistors, 92
Response, 25–28, 26f
Retina, 236–237
Reverse correlation analysis, 240–241
Reverse potential, 319
Ribonucleic acid (RNA), 117
Rod photoreceptor cells, 237
Rough phase portrait, 275–276, 275f

Saddle-node bifurcations, 264–265, 265f ,
280, 281f , 288f , 289

Saddle points, 12f , 278f
Saddles, 267, 267f , 271, 278, 287
Sample mean, 141, 149–150, 157, 158n5,

167
Sample variance, 150, 157
Sampling, 96–99, 97f

aliasing, 97–98, 98f
digital cameras and, 97n5
reconstruction, 98–99, 103f

Sampling theorem, 97, 98–99
Scalar multiplication, 28, 34–35, 36, 37f
Scalar product, 43–46
Scaling, dimensional, 300, 305
Schistocerca americana, 27
Schur complement, 302
Scree plot, 205f
Second derivative, 10–11
Selective ion channels, 322
Self-adjoint matrix, 46
Self-excitation, 307, 307f
Sensory excitation, 307
Separable functions, integrals of, 19
Separatrix, 279, 307
Sequence alignment, 194–196, 195f , 196f
Shannon, C. E., 215, 216f , 218
Sheep vs. rabbits example, 273–280, 275f ,

281f
Shot noise, 200
Shots, 200
Signaling factors, 298
Signal processing, 226–230. See also Filtering
Signals, power spectrum of, 63–64
Signal-to-noise (SNR) ratio, 226–227
Signal transmission, 212–213, 215, 216f
Significance level, 153, 154f , 155
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Simple hypotheses, 152
Sinc function, 98–99
Single-sided power spectrum, 72
Singular matrices, 40
Singular operators, 36, 38
Sinusoidal components, 97
Sinusoids, 7, 8f , 103, 104f
Sinusoid waves, 60
Sleep-wake patterns, 315–316, 315f . See also

Circadian rhythms
Slow direction, 270
Sodium conductance, 320, 321n2, 321f
Sodium ions, 319–320
Somatosensory cortex (S2), 308, 310, 311
Spatial gradients, 292–293
Spatial systems, 293f
Spatial variation, 292, 294
Spearman, C., 204–206, 205f , 206f ,

208–209
Spherical coordinate systems, 17
Spike-triggered average stimulus, 241
Spike-triggered averaging, 240
Spirals, 267–268, 267f , 287, 288f , 302
Square pulses, 57, 58f , 71f
Stability parameter, 262
Stable degenerate nodes, 272
Stable fixed points, 262, 264, 264f , 265,

266f
Stable limit cycles, 268, 281
Stable manifold, 271
Stable nodes, 267, 267f , 270, 277, 277f ,

278f , 288f
Stable spirals, 267–268, 267f , 288f
Standard deviation

of a distribution, 123, 133, 142
Gaussian distribution, 133
sum of independent Gaussian random
variables, 142

Standard error of the parameter estimate,
149

Standard form, 260
Star nodes, 271
Stationarity, 56
Stationary point processes, 197
Stationary process, 186–187
Statistical independence, 137–138
Statistically independent events, 120
Statistical testing

Bayesian estimation, 150–152
bootstrapping, 171–174, 172n14, 173f
goodness of fit, 160–164
hypothesis testing, 152–153
linear regression, 165–171, 165f

maximum likelihood estimation,
145–150, 157n4

nonparametric tests, 164
other tests, 165
t-test, 156–159, 157f
z-test, 153–156, 154f , 156n3

Statistics. See Probability and statistics
Steady-state solutions, 181, 184–186, 185f
Stein, William, 25
Stimulus, 25–28
Stochastic processes, 228
Strange attractors, 291
Structure factors, 87
Sum of squares, 161, 167
Sum of the eigenvalues, 51–52
Sum rule, 10
Supercritical Hopf bifurcation, 289
Supercritical pitchfork bifurcation, 307
Superposition, 228
Superposition principle, 55–56, 59f , 81,

81n4, 181–182
Symmetric matrix, 46
Symmetries, 8
Synapses, 311, 312
Synaptic conductance, 311
System identification, 103–105, 104f

Taylor expansion, 301
Taylor series, 11, 18, 262, 264, 268–269,

269n2
t-distribution, 158, 158f , 170
Telegraph signals, 187, 188f , 189–191,

191f , 228
Temporal PCA, 208
Théorie Analytique des Probabilités (Laplace),

117
Thermal motion. See Brownian motion
3D

coordinate systems in, 16f , 17
dynamical systems in, 291
nonlinear dynamics in, 291
random walks in, 180–181

Time, in dimensional scaling, 300
Time constants, 93
Time series

point processes, converting, 200–201
random (see Random time series)

Time translation, Fourier transforms and, 65
Touch receptors, 238–239, 238f
Tough integrals, 14–15
Trajectory

confined, 287–288
definition of, 260, 260f
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Trajectory (cont.)
linearization at fixed points and,
262–263, 263f

repressilators and, 302, 303f
in 2D, 267, 269–270, 270f

Transcriptional network motif, 304
Transfer function, 66, 102, 103f , 104f
Transformation matrix, 41, 42
Transition probability, 187, 188, 191
Translational invariance, 56–57
Translation-invariant linear systems, 57
Transpose, 46
t-statistic, 158, 159
t-test

one-sample, 156–159, 157f
paired-sample, 159
two-sample, 159, 164
two-tailed, 159

Tube lens, 76, 76f , 79n2
Tukey, John, 73
Turing, A. M., 292, 312
Turing instability, 296–297
Turing model of morphogenesis, 292–298

activators, 293, 293f
diffusion, 294
Fourier analysis, 294–295
inhibitors, 293, 293f
pattern formation, 295–296
pattern growth, 297–298, 298f
pigmentation patterns, 313–314
reaction, 294
Turing instability, conditions for, 296–297

Turing patterns, 312–314, 313f , 314f
2D

coordinate systems in, 16, 16f
dynamical systems in, 266–273, 267f
extrema, 18
fixed points in, 267f , 268f , 270f
linear dynamics in, 269–272
phase points in, 270
random walks in, 180–181
Taylor series, 18
trajectory in, 267, 269–270, 270f
velocity in, 266, 267

Two-interval discrimination, 308, 309f
Two-sided z-test, 155, 156f
Two-tailed t-test, 159

Unbiased estimate, 167
Unbiased estimator for the variance, 157n4
Uncertainty, removal of, 213, 216
Unexplained variance, 204
Uniform distribution, 131

Union, of two events, 119–120, 120f
Unitary matrix, 46
Unitary transform, 46
Unit cells, 82, 84f
Unit vectors, 44
Unstable degenerate nodes, 272
Unstable fixed point, 261–262, 264, 264f ,

265, 266f
Unstable limit cycles, 268, 281
Unstable manifold, 271
Unstable nodes, 267, 267f , 270, 276, 276f ,

288f
Unstable spirals, 267f , 268, 287, 302

Variables
conjugate, 61
continuous, 217, 226–227, 227f
continuous random, 121, 129–135, 129f ,
197

discrete random, 121–128, 197
dynamic, 261
independent, 141
independent random, 137–138, 224
multiple, 16–19
multiple random, 135–142
nondimensionalizing, 274–275
proportional, 169n11
random, 121, 134, 134f , 140–141, 175

Variance, 122n3
Bernoulli distribution, 123
binomial distribution, 125
continuous probability distribution,
130–131

of a distribution, 122–123
Gaussian distribution, 127, 133
geometric distribution, 128
Poisson distribution, 126
probability density, 141
of random processes, 189
sum of random variables, 140
unexplained vs. explained, 204
uniform distribution, 131

Variance-to-mean ratio, 224–225, 226f
Vectors

component representation of, 30–31
definition of, 28
dimensionality, 30, 30f
length of, 44
linear independence, 29–30
multiplication of, 33, 34f
normalized, 44
notation, 258, 260
transform of, 41
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Vector space, 28–29, 28f
Velocity

definition of, 260, 260f
flow and fixed points, 261–262
linearization and, 268–269
in model parameter, 263
in 2D, 266, 267

Venn diagrams, 120, 120f
Vision

binocular rivalry, 306–307
at the quantum limit, 236–238, 237f

Viterbi algorithm, 193, 194
Viterbi path, 193

Wavelength, 77
Wavenumber, 77
Weber-Fechner law, 303
Weiner, Charles, 259n1
White noise, 84, 103–105, 104f
White noise spectrum, 200, 200n4
Wiener filtering, 84, 99–100, 99f , 101–102,

105
Wiener-Khintchin theorem, 189
Working memory, 308
Wright-Fisher model, 231

X-ray scattering, 86–87

Zebrafish, 208n7
Zeitgeber, 317–318, 318f
z-test, 153–156, 154f , 156n3, 156f






